Difference between revisions of "Bioretention"
CWinkelmann (talk | contribs) m |
CWinkelmann (talk | contribs) m |
||
Line 104: | Line 104: | ||
*The inclusion of vegetation with a variety of moisture tolerances ensures that the bioretention cell will adapt to a variety of weather conditions. | *The inclusion of vegetation with a variety of moisture tolerances ensures that the bioretention cell will adapt to a variety of weather conditions. | ||
*Proper spacing must be provided for above-ground and below-ground utilities, and adjacent infrastructure. | *Proper spacing must be provided for above-ground and below-ground utilities, and adjacent infrastructure. | ||
− | *Where possible, a combination of native trees, shrubs, and perennial herbaceous | + | *Where possible, a combination of native trees, shrubs, and perennial herbaceous materials should be used. |
− | materials should be used. | ||
*A planting mix with evergreen and woody plants will provide appealing textures and colors year round, but they may not be appropriate for snow storage areas. | *A planting mix with evergreen and woody plants will provide appealing textures and colors year round, but they may not be appropriate for snow storage areas. | ||
*In areas where less maintenance will be provided and where trash accumulation in shrubbery or herbaceous plants is a concern, consider a “turf and trees” landscaping model. | *In areas where less maintenance will be provided and where trash accumulation in shrubbery or herbaceous plants is a concern, consider a “turf and trees” landscaping model. | ||
*If trees are to be used, or the bioretention is located in a shaded location, then ensure that the chosen herbaceous plants are shade tolerant. | *If trees are to be used, or the bioretention is located in a shaded location, then ensure that the chosen herbaceous plants are shade tolerant. | ||
*Spaces for herbaceous flowering plants can be included. This may be attractive at a community entrance location or in a residential rain garden. | *Spaces for herbaceous flowering plants can be included. This may be attractive at a community entrance location or in a residential rain garden. | ||
+ | |||
Tables for identifying ideal species for bioretention are found in the [[Plant lists]]. See [[plant selection]] and [[planting design]] for supporting advice. | Tables for identifying ideal species for bioretention are found in the [[Plant lists]]. See [[plant selection]] and [[planting design]] for supporting advice. |
Revision as of 13:56, 4 December 2018
This article is about planted installations designed to capture and infiltrate some or all of the stormwater received.
For simple systems, without underdrains or storage reservoir (typically found n residential settings), see Rain gardens.
For linear systems, which convey flow, but are otherwise similar to bioretention see Bioswales.
For planted systems that do not infiltrate any water, see Stormwater planters.
Overview[edit]
Bioretention systems may be the most well recognized form of low impact development (LID). They can fit into any style of landscape and encompass all mechanisms of action: infiltration, filtration, attenuation and evapotranspiration.
Bioretention is an ideal technology for:
- Fitting functional vegetation into urban landscapes
- Treating runoff collected from nearby impervious surfaces
The fundamental components of a bioretention cell are:
- A 'filter bed' containing a filter media
- A storage layer of reservoir aggregate
- planting, and
- a finishing surface layer (e.g. mulch and/or stone)
Additional components may include:
- An underdrain to redistribute or remove excess water
- Soil additives intended to enhance nutrient and related water quality pollutant removal
Planning considerations[edit]
Infiltration[edit]
Some form of stormwater landscaping (bioretention) can be fitted into most spaces. Although there are some constraints to infiltrating water, it is preferable to do so where possible. Designing bioretention without an underdrain is highly desirable wherever the soils permit infiltration at a rate which is great enough to empty the facility between storm events. Volume reduction is achieved primarily through infiltration to the underlying soils, with some evapotranspiration. As there is no outflow from this BMP under normal operating conditions, it is particularly useful in areas where nutrient management is a concern to the watershed.
Bioretention with an underdrain is a popular choice in areas with 'tighter' soils where infiltration rates are ≤ 15 mm/hr. Including an perforated pipe in the reservoir aggregate layer helps to empty the facility between storm events, which is particularly useful in areas with low permeability soils. The drain discharges to a downstream point, which could be an underground infiltration trench or chamber facility. Volume reduction is gained through infiltration and evapotranspiration. By raising the outlet of the discharge pipe the bottom portion of the BMP can only drain through infiltration. This creates a fluctuating anaerobic/aerobic environment which promotes denitrification. Increasing the period of storage has benefits for promoting infiltration, but also improves water quality for catchments impacted with nitrates. A complimentary technique is to use fresh wood mulch, which also fosters denitrifying biological processes.
Where infiltration is entirely impossible, but the design calls for planted landscaping, try a stormwater planter instead.
Space[edit]
- For optimal performance bioretention facilities should receive runoff from between 5 to 20 times their own surface area.
- In the conceptual design stage it is recommended to set aside approximately 10 - 20 % of a catchment's total area for bioretention facility placement.
- Bioretention cells work best when distributed, so that no one facility receives runoff from more than 0.8 Ha.
- Although, there is a trade off to be considered regarding distributed collection and treatment against ease of maintenance.
- Bioretention can be almost any shape, from very curving, soft edges with variable depth, to angular, hard sided and uniform depth.
- For ease of construction and to ensure that the vegetation has adequate space, cells should be no narrower than 0.6 m at any point.
- The maximum width of a facility is determined by the reach of the construction machinery, which must not be tracked into the cell.
The principles of bioretention can be applied in any scenario where planting or vegetation would normally be found.
Private sites[edit]
In single family residential sites rain gardens most often take the form of a soft edged, traditional perennial planting bed. As many private industrial, commercial and institutional sites have landscaping around their parking lots, Bioretention: Parking lots is an increasingly popular choice to manage stormwater.
Streetscape[edit]
Bioretention is a popular choice for making urban green space work harder. Design configurations include extending the cells to accommodate shade trees, and using retrofit opportunities to create complete streets with traffic calming and curb extensions or 'bump outs'. See Bioretention: Streetscapes
Parkland and natural areas[edit]
Naturalized landscaping and soft edges can make a bioretention facility 'disappear' into green space surroundings. In some scenarios, a larger bioretention (50 - 800 m2) cell may be used as an end-of-pipe facility treating both sheet flow and concentrated flow before it enters an adjacent water course. In these larger installations care must be made in the design to distribute the inflow, preventing erosion and maximizing infiltration.
Design[edit]
Poor design choice: Limits outflow water quality |
Better design choice: Improves outflow water quality |
---|---|
Single large cell design | Several smaller distributed cells |
Single concentrated inflow | Forebays or distributed flow |
No pretreatment | Pretreatment provided as part of treatment train design |
Over-sized underdrain | Moderately sized underdrain (or no underdrain) |
Filter bed < 0.5 m | Filter bed > 0.75 m |
Filter media Phosphorus > 30 ppm | Filter media Phosphorus < 30 ppm |
Filter media predominantly sand | Filter media contains fractions of fines and organic material in sand |
Surface covered with stone (or uncovered) | Surface covered with mulch and dense vegetation |
Sizing and Modelling[edit]
Bioretention facilities should be sized to accommodate runoff from approximately 10 to 20 times the footprint area of the facility. i.e. they should have an I/P ratio of 10 to 20. When the drainage area is too large, silt can accumulate very rapidly, overwhelm the pretreatment devices, and lead to clogging of the facility. When the drainage area is relatively small compared to a bioretention facility, it can make the facility appear unreasonably costly.
Inlets and pretreatment options[edit]
Options for pretreatment include:
- A gravel diaphragm for sheet flow
- Vegetated filter strips for sheet flow
- A forebay for concentrated overground flow
- An oil and grit separator for concentrated underground flow
Simple (non-treating) inlets include:
- Sheet flow from a depressed curb
- One of more curb cuts
- Covered drains
Overflow routing[edit]
Routing[edit]
- Infiltration facilities can be designed to be inline or offline from the drainage system. See figure to the right for an illustration.
- Inline facilities accept all of the flow from a drainage area and convey larger event flows through an overflow outlet. The overflow must be sized to safely convey larger storm events out of the facility. The overflow must be situated at the maximum surface ponding elevation or furthest downgradient end of the facility to limit surface ponding during periods of flow in excess of the facility storage capacity.
- Offline facilities use flow splitters or bypass channels that only allow the design storm runoff storage volume to enter the facility. Higher flows are conveyed to a downstream storm sewer or other BMP by a flow splitting manhole weir or pipe, or when the maximum surface ponding depth has been reached, by by-passing the curb opening and flowing into a downstream catchbasin connected to a storm sewer.
Overflow Elevation[edit]
The invert of the overflow should be placed at the maximum water surface elevation of the practice (i.e. the maximum surface ponding level). A good starting point is 150 to 350 mm above the surface of the mulch cover. However, consideration should be given to public safety, whether or not an underdrain is included, the time required for ponded water to drain through the filter bed surface, and if no underdrain is present, into the underlying native soil (must drain within 48 hours). See Bioretention: Sizing and Stormwater planters for more details.
Freeboard[edit]
- In swales conveying flowing water a freeboard of 300 mm is generally accepted as a good starting point.
- In bioretention the freeboard is the difference between the invert elevation of the inlet and overflow structure. 150 mm will usually suffice, so long as the inlet will not become inundated during design storm conditions.
- In above grade stormwater planters, the equivalent dimension would be the difference between the invert elevation of the lip of the planter and the overflow structure (150 mm minimum).
Overflow Outlet Options[edit]
Metal grates are recommended (over plastic) in all situations.
Feature | Anti Vandalism/Robust | Lower Cost Option | Self cleaning |
---|---|---|---|
Dome grate | x | ||
Flat grate | x | ||
Catch basin | x | ||
Ditch inlet catch basin | x | x | |
Curb cut | x | x | x |
Gallery[edit]
Flat metal overflow with stone surround to reduce erosion around the cast concrete structure. Mississauga Road, ON
Domed, metal overflow grate. Being flush with the surface reduces potential infiltration of ponded water. Photo credit: Aaron Volkening
Overflow inlet for newly constructed stormwater bioretention areas in median of Bradley Road. Village of Brown Deer, Wisconsin. Bradley Road, east of 51st Street. Photo from October 2015. Constructed summer 2015.
Photo credit: Aaron Volkening
Plant Selection[edit]
- Exposure to roadway or parking lot runoff
- Select salt tolerant grasses, other herbaceous material and shrubs.
- These can take on several forms, including parking lot islands, traffic islands, roundabouts, or cul-de-sacs and are often used as snow storage locations.
- No exposure to roadway or parking lot runoff
- Practices allow for a greater range of species selection.
- These receive runoff from rooftops or areas that use no deicing salt and have low pollutant exposure, such as courtyard bioretention.
Other selection factors:
- Most bioretention cells will be situated to receive full sun exposure. The ‘Exposure’ column in the master plant list identifies the sun exposure condition for each species.
- Facilities with a deeper media bed (greater than 1 m) provide the opportunity for a wider range of plant species (including trees).
- The inclusion of vegetation with a variety of moisture tolerances ensures that the bioretention cell will adapt to a variety of weather conditions.
- Proper spacing must be provided for above-ground and below-ground utilities, and adjacent infrastructure.
- Where possible, a combination of native trees, shrubs, and perennial herbaceous materials should be used.
- A planting mix with evergreen and woody plants will provide appealing textures and colors year round, but they may not be appropriate for snow storage areas.
- In areas where less maintenance will be provided and where trash accumulation in shrubbery or herbaceous plants is a concern, consider a “turf and trees” landscaping model.
- If trees are to be used, or the bioretention is located in a shaded location, then ensure that the chosen herbaceous plants are shade tolerant.
- Spaces for herbaceous flowering plants can be included. This may be attractive at a community entrance location or in a residential rain garden.
Tables for identifying ideal species for bioretention are found in the Plant lists. See plant selection and planting design for supporting advice.