Infiltration trenches

From LID SWM Planning and Design Guide
(Redirected from Infiltration trench)
Jump to: navigation, search

This article is about underground systems which distribute concentrated flow along a level, linear facility to promote infiltration to native soils.
For a similar structure, which differs in being designed to receive excess flow and convey it, whilst promoting infiltration to native soils, see exfiltration trenches.

The infiltration trench at Kortright is topped with filter fabric and decorative stone, both of which provide some pretreatment and can easily be removed and replaced as an occasional maintenance task. For more details click here

Overview

As their name suggests infiltration trenches work primarily to infiltrate and convey stormwaterSurface runoff from at-grade surfaces, resulting from rain or snowmelt events.. They are an underground facility and are excellently suited to connecting other components in the treatment trainStormwater management following the hierarchical approach: Source Control measures, Conveyance Control measure and End of Pipe treatment to achieve the water quality and water balance target for lot level development of the preferred strategy.A combination of lot level, conveyance, and end-of-pipe stormwater management practices..

Infiltration trenches are an ideal technology for:

  • Installing below any type of surface or landscape
  • Balancing the requirements to infiltrate excess stormwater whilst conveying excess

The fundamental components of an infiltration trench are:

Planning considerations

As shown in the illustration above a surface inlet to an infiltration trench may simply be a channel of decorative stone supported by a geotextile. So that at grade it may be indistinguishable from a gravel diaphragm. In function though, the decorative surface course of the infiltration trench needs to remain free-draining down into the trench, whereas the gravel diaphragmA level spreading device placed at a runoff discharge location, perpendicular to flow, to maintain sheet flow and distribute runoff as evenly as possible across a pervious area or stormwater infiltration practice. A gravel diaphragm acts as a pretreatment device, settling out suspended sediments before they reach the practice. is designed to spill over onto adjacent land, leaving sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. behind in the gravel or stone channel.

Design

Sizing

Infiltration: Sizing and modeling

Virginia up to 10' (3 m) deep. [1]

Minnesota up to 12' (3.6 m) deep. [2]

Materials

AggregateA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations.

Note the uniform size and angularity of this clear stone sample. Note also that the fragments all appear to have a film of fine particles adhering; this material would be improved by being washed prior to use.

This article gives recommendations for aggregateA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. to be used to store water for infiltrationThe slow movement of water into or through a soil or drainage system.Penetration of water through the ground surface.. This is usually called 'Clear stone' at aggregateA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. yards.

To see an analysis of Ontario Standard Specifications for granularGravel, or crushed stone of various size gradations (i.e., diameter), used in construction; void forming material used as bedding and runoff storage reservoirs and underdrains in stormwater infiltration practices. materials, see OPSS aggregates.

For advice on decorative surface aggregatesA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. see Stone


Gravel used for underdrains in bioretention, infiltration trenches and chambers, and exfiltration trenches should be 20 or 50 mm, uniformly-graded, clean (maximum wash loss of 0.5%), crushed angular stone that has a void ratio of 0.4[3].

The clean wash to prevent rapid accumulation of finesSoil particles with a diameter less than 0.050 mm. from the aggregateA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. particles in the base of the reservoir. The uniform grading and the angularity are important to maintain pore throats and clear voids between particles. (i.e. achieve the void ratio). Porosity and permeability are directly influenced by the size, gradation and angularity of the particles [4]. See jar test for on-site verification testing protocols.

Gravel with structural requirements should also meet the following criteria:

  • Minimum durability index of 35
  • Maximum abrasion of 10% for 100 revolutions and maximum of 50% for 500 revolutions

Standard specifications for the gradation of aggregatesA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. are maintained by ASTM D2940


Perforated Pipe

Pipes are available with perforations on just one side, these should be situated on the lower half of the pipe. Pipes with 360° perforations should have a strip of geotextileFilter fabric that is installed to separate dissimilar soils and provide runoff filtration and contaminant removal benefits while maintaining a suitable rate of flow; may be used to prevent fine-textured soil from entering a coarse granular bed, or to prevent coarse granular from being compressed into underlying finer-textured soils. or membrane placed over the pipe to reduce the migration of finesSoil particles with a diameter less than 0.050 mm. from overlying media.

Perforated pipes are a common component of underdrains, infiltration trenches and exfiltration trenches.

Pipes should have been manufactured in conformity with the latest standards by the Canadian Standards Association (CSA) or ASTM International.

  • Perforated pipes should be continuously perforated, smooth interior HDPE (or equivalent material) with a minimum inside diameter of 100 mm.
    • Wherever possible, pipes should be ≥ 200 mm internal diameter.
    • Smooth interior facilitates inspection and maintenance activities; internal corrugations can cause cameras or hydrojetting apparatus to become snagged.
    • A perforated pipe with many rectangular slots has better drainage characteristics than a pipe with similar open area provided by fewer circular holes [5].
  • Non-perforated pipes should be used for conveyance to and away from the facility, including overflow. It is good practice to extend the non-perforated pipe approximately 300 mm within the reservoir or practice to reduce the chance of migration from native soils clogging the pipe at the interface.

See also: flow through perforated pipe


Construction

The following presents a summary of considerations when planning the construction of a low impact developmentA stormwater management strategy that seeks to mitigate the impacts of increased urban runoff and stormwater pollution by managing it as close to its source as possible. It comprises a set of site design approaches and small scale stormwater management practices that promote the use of natural systems for infiltration and evapotranspiration, and rainwater harvesting. project. More details can be found in the following reference:[6]

  • The site of the infiltration facility must remain outside the limit of disturbance and blocked from site traffic until construction of the facility begins, to prevent soil compaction by heavy equipment.
  • This area must not be used as the site of sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. basinsGround depression acting as a flow control and water treatment structure, that is normally dry. during construction, as the concentration of finesSoil particles with a diameter less than 0.050 mm. will reduce post-construction infiltrationThe slow movement of water into or through a soil or drainage system.Penetration of water through the ground surface..
  • This area must not be use as a staging area, for storing materials.
  • To prevent sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. from clogging the surface, stormwater must be diverted away from the facility until the drainage areaThe total surface area upstream of a point on a stream that drains toward that point. Not to be confused with watershed. The drainage area may include one or more watersheds. is fully stabilized.
  • As many infiltration facilities are installed in the road right-of-way or tight urban spaces, considerations of traffic control and utility conflicts must be part of the plans and inspections.

Sequencing

The following is a typical construction sequence to properly install an infiltration practice:

  1. The area should be fully protected by siltSoil or media particles smaller than sand and larger than clay (3 to 60 m) fence or construction fencing to prevent compaction by construction traffic and equipment.
  2. Installation may only begin after entire contributing drainage areaThe total surface area upstream of a point on a stream that drains toward that point. Not to be confused with watershed. The drainage area may include one or more watersheds. has been either stabilized or flows have been safely routed around the area. The designer should check the boundaries of the contributing drainage areaThe total surface area upstream of a point on a stream that drains toward that point. Not to be confused with watershed. The drainage area may include one or more watersheds. to ensure it conforms to original design.
  3. The pretreatmentInitial capturing and removal of unwanted contaminants, such as debris, sediment, leaves and pollutants, from stormwater before reaching a best management practice; Examples include, settling forebays, vegetated filter strips and gravel diaphragms. part of the design should be excavated first and sealed until full construction is completed.
  4. Excavators or backhoes working adjacent to the proposed infiltration area should excavate to the appropriate design depth.
  5. The soil in the bottom of the excavation should be ripped to promote greater infiltrationThe slow movement of water into or through a soil or drainage system.Penetration of water through the ground surface..
  6. Any accidental sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. accumulation from construction should be removed at this time.


  1. Excavate subsurface water storage reservoir to base elevation,
  2. Check base elevation and slope,
  3. Fracture/rip bottom and roughen side of the excavation to remove smeared surfaces,
  4. Install optional geotextiles (or liner for biofilter); overlapping according to design drawings,
  5. Install coarse reservoir gravel, and any void forming structures (e.g. underdrains, infiltration chambers, or wells),
  6. Check elevation and slope at top of reservoir,
  7. Install choking layer and optional geotextileFilter fabric that is installed to separate dissimilar soils and provide runoff filtration and contaminant removal benefits while maintaining a suitable rate of flow; may be used to prevent fine-textured soil from entering a coarse granular bed, or to prevent coarse granular from being compressed into underlying finer-textured soils. (typically only over the perforated pipe),
  8. Check elevation and slope at top of choking layer,
  9. Install filter media with additional 30 cm over finish grade of the filter bed,
  10. Thoroughly saturate and allow to settle for at least one week. After this time, tamp manually to check settling is complete. Alternatively, installations made in the fall can be left to settle over the whole winter season at this point,
  11. Install temporary erosion and sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. control practices,
    Conduct all other site construction activities (buildings/servicing etc.)
  12. Check condition of bioretentionA shallow excavated surface depression containing prepared filter media, mulch, and planted with selected vegetation. after settling period, remediate any deficiencies,
  13. Install curbs and pavements and concrete pretreatment devices,
  14. Check elevations of curb cuts and other inlets
  15. Install erosion controlIncludes the protection of soil from dislocation by water, wind or other agents. to all inlets!!
  16. Remove excess filter mediaThe engineered soil component of bioretention cell or dry swale designs, typically with a high rate of infiltration and designed to retain contaminants through filtration and adsorption to particles. along with any accumulated construction sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls.,
  17. Install any surface applied additives,
  18. Conduct fine grading to surface of filter bed, checking elevations/slopes/compaction,
  19. Apply stone or mulch cover for decorative systems, or turf reinforcement for grassed systems,
  20. Install erosion control blankets or matting
  21. Plant or lay sod,
  22. Saturated system thoroughly to settle filer media particles around the roots of new plants,
  23. Irrigated the system as required to establish healthy vegetation cover,
  24. Inspect and remediate deficiencies after any significant rainfall within the next 3 months or remainder of the first growing season.



Facilities containing media

BioretentionA shallow excavated surface depression containing prepared filter media, mulch, and planted with selected vegetation.

Sequencing depends on the design:

  • Full infiltrationThe slow movement of water into or through a soil or drainage system.Penetration of water through the ground surface.:Pack 50 mm diameter clear stone to storage design depth, top with 100 mm of the choker course,
  • Partial infiltrationThe slow movement of water into or through a soil or drainage system.Penetration of water through the ground surface.:Place design depth of 50 mm diameter clear stone for the infiltration volume on bed and then lay the perforated underdrainA perforated pipe used to assist the draining of soils. pipe over it. Pack more clear stone to 75 mm above the top of the underdrainA perforated pipe used to assist the draining of soils., top with 100 mm of choker layer.

Stormwater planters

  • Place an impermeable liner on the bed with 150 mm overlap on sides. Lay the perforated underdrainA perforated pipe used to assist the draining of soils. pipe, Pack 50 mm diameter clear stone to 75 mm above top of underdrainA perforated pipe used to assist the draining of soils., top with 100 mm of choker layer;

Rain gardens

No storage or drainage is required, filter mediaThe engineered soil component of bioretention cell or dry swale designs, typically with a high rate of infiltration and designed to retain contaminants through filtration and adsorption to particles. or amended topsoil is laid onto native soils

Media installation

Media installed over the choker course in 0.3 m lifts until desired top elevation is achieved. Each lift must be thoroughly wetted and drained before adding the next. Wait three weeks to check for settling, and add additional media and regrade as needed.

  • Prepare planting holes for any trees and shrubs, install vegetation, and water accordingly.
  • Install any temporary irrigationHuman application of water to agricultural or recreational land for watering purposes. City of Toronto Wet Weather Flow Management November 2006 47.
  • Plant landscaping materials as shown in the landscaping plan, and water them weekly in the first two months.
  • Lay down surface cover in accordance with the design (mulcha top dressing over vegetation beds that provides suppresses weeds and helps retain soil moisture in bioretention cells, stormwater planters and dry swales., riverstone, or turf).
  • Conduct final construction inspection, checking inlet, pretreatmentInitial capturing and removal of unwanted contaminants, such as debris, sediment, leaves and pollutants, from stormwater before reaching a best management practice; Examples include, settling forebays, vegetated filter strips and gravel diaphragms., bioretentionA shallow excavated surface depression containing prepared filter media, mulch, and planted with selected vegetation. cell and outlet elevations.
  • Remove erosion and sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. controls, only when the entire drainage areaThe total surface area upstream of a point on a stream that drains toward that point. Not to be confused with watershed. The drainage area may include one or more watersheds. is stabilized.

Checklists



Gallery


  1. Viriginia Deprtmant of Transport. (2010). VDOT BMP Design Manual of Practice. Retrieved March 15, 2018, from http://www.virginiadot.org/business/resources/LocDes/BMP_Design-Manual/Chapter_8_Infiltration_Trench.pdf
  2. Design criteria for Infiltration trench. (2016, September 21). Minnesota Stormwater Manual, . Retrieved 13:25, April 4, 2018 from https://stormwater.pca.state.mn.us/index.php?title=Design_criteria_for_Infiltration_trench&oldid=28702.
  3. Porosity of Structural Backfill, Tech Sheet #1, Stormtech, Nov 2012, http://www.stormtech.com/download_files/pdf/techsheet1.pdf accessed 16 October 2017
  4. 4.0 4.1 4.2 Judge, Aaron, "Measurement of the Hydraulic Conductivity of Gravels Using a Laboratory Permeameter and Silty Sands Using Field Testing with Observation Wells" (2013). Dissertations. 746. http://scholarworks.umass.edu/open_access_dissertations/746
  5. Hazenberg, G., and U. S. Panu (1991), Theoretical analysis of flow rate into perforated drain tubes, Water Resour. Res., 27(7), 1411–1418, doi:10.1029/91WR00779.
  6. [https://cvc.ca/wp-content/uploads/2013/03/CVC-LID-Construction-Guide-Book.pdf Construction Guide for Low Impact Development, CVC (2013)