Stone

From LID SWM Planning and Design Guide
Jump to: navigation, search
This rain gardenA lot level bioretention cell designed to receive and detain, infiltrate and filter runoff, typically used for discharge from downspouts. in a school yard uses stone as both decorative edging and for erosion controlIncludes the protection of soil from dislocation by water, wind or other agents..
This bioswaleLinear bioretention cell designed to convey, treat and attenuate stormwater runoff. The engineered filter media soil mixture and vegetation slows the runoff water to allow sedimentation, filtration through the root zone, evapotranspiration, and infiltration into the underlying native soil. in a parking lot uses stone at the inlets and along the bottom of the swaleA shallow constructed channel, often grass-lined, which is used as an alternative to curb and channel, or as a pretreatment to other measures. Swales are generally characterized by a broad top width to depth ratio and gentle grades. to prevent erosion(1) The wearing away of the land surface by moving water, wind, ice or other geological agents, including such processes as gravitation creep; (2) Detachment and movement of soil or rock fragments by water, wind, ice or gravity (i.e. Accelerated, geological, gully, natural, rill, sheet, splash, or impact, etc)., as the sides are sloped.

For advice on aggregatesA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. used in underdrains, see Reservoir aggregate.

Stone or gravel can serve as a low maintenance decorative feature, but it may also serve many practical functions on the surface of an LIDLow Impact Development. A stormwater management strategy that seeks to mitigate the impacts of increased urban runoff and stormwater pollution by managing it as close to its source as possible. It comprises a set of site design approaches and small scale stormwater management practices that promote the use of natural systems for infiltration and evapotranspiration, and rainwater harvesting. practice.

Stone for erosion controlIncludes the protection of soil from dislocation by water, wind or other agents.

AggregatesA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. used to line swales or otherwise dissipate energy (e.g. in forebays) should have high angularity to increase the permissible shear stress applied by the flow of water. [1] However, in some surface landscaped applications there may be a desire to use a rounded aggregateA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. such as 'river rock' for aesthetic reasons. Rounded stones should be of sufficient size to resist being moved by the flow of water. Typical stone for this purpose ranges between 50 mm and 250 mm. The larger the stone, the more energy dissipation.

  • Stone beds should be twice as thick as the largest stone's diameter.
  • If the stone bed is underlain by a drainage geotextile, regular inspection and possible replacement should be scheduled as there is a potential for clogging of this layer to occur.

Stone mulcha top dressing over vegetation beds that provides suppresses weeds and helps retain soil moisture in bioretention cells, stormwater planters and dry swales.

Finer inorganic mulcha top dressing over vegetation beds that provides suppresses weeds and helps retain soil moisture in bioretention cells, stormwater planters and dry swales. materials can be of value applied in areas with extended ponding times i.e. in the the centre of recessed, bowl shaped bioretention, stormwater planters, trenches or swale practices. Inorganic mulches resist movement from flowing water and do not float. Applying a thin layer of inorganic mulcha top dressing over vegetation beds that provides suppresses weeds and helps retain soil moisture in bioretention cells, stormwater planters and dry swales. over the top of wood based mulcha top dressing over vegetation beds that provides suppresses weeds and helps retain soil moisture in bioretention cells, stormwater planters and dry swales. has been shown to reduce migration of the underlying layer by around 25% [2]. Inorganic mulches which may be available locally, include:

  • Crushed glass
  • Crushed mussel shells
  • Pea gravel

  1. Roger T. Kilgore and George K. Cotton, (2005) Design of Roadside Channels with Flexible Linings Hydraulic Engineering Circular Number 15, Third Edition https://www.fhwa.dot.gov/engineering/hydraulics/pubs/05114/05114.pdf
  2. Simcock, R and Dando, J. 2013. Mulch specification for stormwater bioretention devices. Prepared by Landcare Research New Zealand Ltd for Auckland Council. Auckland Council technical report, TR2013/056