Geotextiles

From LID SWM Planning and Design Guide
Jump to: navigation, search
The properties of geotextiles vary widely.

See Clogging for notes on their application in LIDLow Impact Development. A stormwater management strategy that seeks to mitigate the impacts of increased urban runoff and stormwater pollution by managing it as close to its source as possible. It comprises a set of site design approaches and small scale stormwater management practices that promote the use of natural systems for infiltration and evapotranspiration, and rainwater harvesting. structures.

Geotextiles can be used to prevent downward migration of smaller particles in to larger aggregatesA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations., and slump of heavier particles into finer underlying courses. The formation of biofilm on geotextiles has also been shown to improve water quality:

  • By degrading petroleum hydrocarbons[1]
  • By reducing organic pollutant and nutrient concentrations [2]
  • When installing geotextiles an overlap of 150 - 300 mm should be used.

Material specifications should conform to OPSS 1860 for Class II geotextileFilter fabric that is installed to separate dissimilar soils and provide runoff filtration and contaminant removal benefits while maintaining a suitable rate of flow; may be used to prevent fine-textured soil from entering a coarse granular bed, or to prevent coarse granular from being compressed into underlying finer-textured soils. fabrics [3].

  • Fabrics should be woven monofilament or non-woven needle punched.
  • Woven slit film and non-woven heat bonded fabrics should not be used, as they are prone to clogging.

In choosing a product, consider:

  1. The maximum forces that will be exerted on the fabric (i.e., what tensile, tear and puncture strength ratings are required?),
  2. The load bearing ratio of the underlying native soilThe natural ground material characteristic of or existing by virtue of geographic origin. (i.e. is the geotextileFilter fabric that is installed to separate dissimilar soils and provide runoff filtration and contaminant removal benefits while maintaining a suitable rate of flow; may be used to prevent fine-textured soil from entering a coarse granular bed, or to prevent coarse granular from being compressed into underlying finer-textured soils. needed to prevent downward migration of aggregateA broad category of particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates, and available in various particulate size gradations. into the native soilThe natural ground material characteristic of or existing by virtue of geographic origin.?),
  3. The texture (i.e., grain size distribution) of the overlying and underlying materials, and
  4. The suitable apparent opening size (AOS) for non-woven fabrics, or percent open area (POA) for woven fabrics, to maintain water flow even with sedimentSoil, sand and minerals washed from land into water, usually after rain. They pile up in reservoirs, rivers and harbors, destroying fish-nesting areas and holes of water animals and cloud the water so that needed sunlight might not reach aquatic plans. Careless farming, mining and building activities will expose sediment materials, allowing them to be washed off the land after rainfalls. and microbial film build-up.
Recommended criteria for selection of geotextileFilter fabric that is installed to separate dissimilar soils and provide runoff filtration and contaminant removal benefits while maintaining a suitable rate of flow; may be used to prevent fine-textured soil from entering a coarse granular bed, or to prevent coarse granular from being compressed into underlying finer-textured soils. fabric
Percent soil/filter mediaThe engineered soil component of bioretention cell or dry swale designs, typically with a high rate of infiltration and designed to retain contaminants through filtration and adsorption to particles. passing 0.075 mm (#200 sieve) Non-woven fabric apparent opening size (AOS, mm) Woven fabric percent open area (POA, %) Permittivity (sec-1)
>85 ≤ 0.3 - 0.1
50 - 85 ≤ 0.3 ≥ 4 0.1
15 - 50 ≤ 0.6 ≥ 4 0.2
5 - 15 ≤ 0.6 ≥ 4 0.5
≤ 5 ≤ 0.6 ≥ 10 0.5

Performance research

http://www.mdpi.com/2073-4441/7/4/1595/htm


  1. Newman AP, Coupe SJ, Spicer GE, Lynch D, Robinson K. MAINTENANCE OF OIL-DEGRADING PERMEABLE PAVEMENTS: MICROBES, NUTRIENTS AND LONG-TERM WATER QUALITY PROVISION. https://www.icpi.org/sites/default/files/techpapers/1309.pdf. Accessed July 17, 2017.
  2. Paul P, Tota-Maharaj K. Laboratory Studies on Granular Filters and Their Relationship to Geotextiles for Stormwater Pollutant Reduction. Water. 2015;7(4):1595-1609. doi:10.3390/w7041595.
  3. ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 1860 MATERIAL SPECIFICATION FOR GEOTEXTILES. 2012. http://www.raqsb.mto.gov.on.ca/techpubs/OPS.nsf/0/2ccb9847eb6c56738525808200628de1/$FILE/OPSS%201860%20Apr12.pdf. Accessed July 17, 2017