# Changes

,  5 years ago
no edit summary
Line 5: Line 5:
Sizing a triangular channel for complete volume retention:

Sizing a triangular channel for complete volume retention:
−
$L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}f}$
+
$L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}q}$

===Trapezoidal channel===

===Trapezoidal channel===

Sizing a trapezoidal channel for complete volume retention:

Sizing a trapezoidal channel for complete volume retention:
$L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}f}$
+
$L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}q}$
+

+
{Plainlist|1=Where:
+
*L = length of swale in m
+
*Q<sub>p</sub> = peak flow of the storm to be controlled, in m<sup>3</sup>/s
+
*m = swale side slope (dimensionless)
+
*S = the longitudinal slope (dimensionless)
+
*n = Manning's coefficeint (dimensionless)
+
*b = bottom width of trapezoidal swale, in m.}
+

+

+

+

+

+

[[category:modeling]]

[[category:modeling]]
8,255

edits