Changes

Jump to navigation Jump to search
Line 441: Line 441:     
For more recent research on the water management benefits of urban trees, and modelling approaches see the following articles and projects.
 
For more recent research on the water management benefits of urban trees, and modelling approaches see the following articles and projects.
* [https://www.sciencedirect.com/science/article/abs/pii/S0925857418302453?via%3Dihub Role of plants in bioretention performance (Dagenais et al. 2018)]<ref>Dagenais, D., Brisson, J. and Fletcher, T.D. 2018. The role of plants in bioretention systems; does the science underpin current guidance?. Ecological Engineering, 120, pp.532-545. http://www.phytotechno.com/wp-content/uploads/2018/10/Dagenais-2018-Bioretention.pdf</ref>
+
* '''[https://www.sciencedirect.com/science/article/abs/pii/S0925857418302453?via%3Dihub Role of plants in bioretention performance (Dagenais et al. 2018)]'''<ref>Dagenais, D., Brisson, J. and Fletcher, T.D. 2018. The role of plants in bioretention systems; does the science underpin current guidance?. Ecological Engineering, 120, pp.532-545. http://www.phytotechno.com/wp-content/uploads/2018/10/Dagenais-2018-Bioretention.pdf</ref>
 
** Daneis ''et al''. (2018), test the four major hypotheses regarding the role of plants in bioretention systems by reviewing current scientific literature - these are: (1) Planted systems are more effective vs. unplanted ones, (2) Effectiveness of plant species in a bioretention system differ, (3) Native species are more effective vs. their exotic counterparts, and (4) A diverse plant system in bioretention are more efficient vs. the option of planting a  monoculture system.
 
** Daneis ''et al''. (2018), test the four major hypotheses regarding the role of plants in bioretention systems by reviewing current scientific literature - these are: (1) Planted systems are more effective vs. unplanted ones, (2) Effectiveness of plant species in a bioretention system differ, (3) Native species are more effective vs. their exotic counterparts, and (4) A diverse plant system in bioretention are more efficient vs. the option of planting a  monoculture system.
* [https://www.sciencedirect.com/science/article/abs/pii/S0022169418306346?via%3Dihub Tree pit hydrology in Melbourne, Australia (Grey et al. 2018)] <ref>Grey, V., Livesley, S.J., Fletcher, T.D. and Szota, C. 2018. Tree pits to help mitigate runoff in dense urban areas. Journal of Hydrology, 565, pp.400-410. https://www.sciencedirect.com/science/article/abs/pii/S0022169418306346?via%3Dihub</ref>
+
* '''[https://www.sciencedirect.com/science/article/abs/pii/S0022169418306346?via%3Dihub Tree pit hydrology in Melbourne, Australia (Grey et al. 2018)]''' <ref>Grey, V., Livesley, S.J., Fletcher, T.D. and Szota, C. 2018. Tree pits to help mitigate runoff in dense urban areas. Journal of Hydrology, 565, pp.400-410. https://www.sciencedirect.com/science/article/abs/pii/S0022169418306346?via%3Dihub</ref>
 
** Grey ''et al''. (2018), conduct a streetscape experiment to determine the runoff retention rate of tree pits in heavy [[Soil groups|clay soil]] with low exfiltration nates. Their research found that runoff retention is possible in even very dense urban streetscapes, but sizing of the features must be set between 2.5% - 8% of the impervious catchment area (dependent upon tree pit exfiltration rates) to achieve 90% reduction in annual runoff.
 
** Grey ''et al''. (2018), conduct a streetscape experiment to determine the runoff retention rate of tree pits in heavy [[Soil groups|clay soil]] with low exfiltration nates. Their research found that runoff retention is possible in even very dense urban streetscapes, but sizing of the features must be set between 2.5% - 8% of the impervious catchment area (dependent upon tree pit exfiltration rates) to achieve 90% reduction in annual runoff.
* [https://ascelibrary.org/doi/10.1061/JSWBAY.0000865 Health of trees in bioretention (Tirpak et al. 2018)]<ref>Tirpak, R.A., Hathaway, J.M., Franklin, J.A. and Khojandi, A. 2018. The health of trees in bioretention: A survey and analysis of influential variables. Journal of Sustainable Water in the Built Environment, 4(4), p.04018011. https://ascelibrary.org/doi/10.1061/JSWBAY.0000865</ref>
+
* '''[https://ascelibrary.org/doi/10.1061/JSWBAY.0000865 Health of trees in bioretention (Tirpak et al. 2018)]'''<ref>Tirpak, R.A., Hathaway, J.M., Franklin, J.A. and Khojandi, A. 2018. The health of trees in bioretention: A survey and analysis of influential variables. Journal of Sustainable Water in the Built Environment, 4(4), p.04018011. https://ascelibrary.org/doi/10.1061/JSWBAY.0000865</ref>
 
**Tirpak ''et al.'' (2018), conducted a study on tree health in bioretention systems in southeastern U.S. Of the 6 species studied, only 1 showed greater health in bioretention media compared to urban trees not planted in bioretention systems. Results show that species selection should be based on bioretention media analysis and compatibility with specific species' growing preferences health before planting.
 
**Tirpak ''et al.'' (2018), conducted a study on tree health in bioretention systems in southeastern U.S. Of the 6 species studied, only 1 showed greater health in bioretention media compared to urban trees not planted in bioretention systems. Results show that species selection should be based on bioretention media analysis and compatibility with specific species' growing preferences health before planting.
* [http://dx.doi.org/10.1016/j.landurbplan.2017.02.017 Role of trees in urban stormwater management (Berland et al. 2017)]<ref>Berland, A., Shiflett, S.A., Shuster, W.D., Garmestani, A.S., Goddard, H.C., Herrmann, D.L. and Hopton, M.E. 2017. The role of trees in urban stormwater management. Landscape and urban planning, 162, pp.167-177. https://pdf.sciencedirectassets.com/271853/1-s2.0-S0169204617X00030/1-s2.0-S0169204617300464/Adam_Berland_green_infrastructure_2017.pdf</ref>
+
* '''[http://dx.doi.org/10.1016/j.landurbplan.2017.02.017 Role of trees in urban stormwater management (Berland et al. 2017)]'''<ref>Berland, A., Shiflett, S.A., Shuster, W.D., Garmestani, A.S., Goddard, H.C., Herrmann, D.L. and Hopton, M.E. 2017. The role of trees in urban stormwater management. Landscape and urban planning, 162, pp.167-177. https://pdf.sciencedirectassets.com/271853/1-s2.0-S0169204617X00030/1-s2.0-S0169204617300464/Adam_Berland_green_infrastructure_2017.pdf</ref>
 
** Berland ''et al''., provided encouraging signs from their literature review noting the importance of urban trees in stormwater control and management. Their review found that trees are compatible with various GSI technologies and may improve the function of these installations through evapotranspiration and improvements in infiltration rates. Further understanding should be focused on context-specific considerations of optimal arboriculture practices and improved frameworks to maximize the benefits that urban trees provide LIDs related to the hydrologic cycle.
 
** Berland ''et al''., provided encouraging signs from their literature review noting the importance of urban trees in stormwater control and management. Their review found that trees are compatible with various GSI technologies and may improve the function of these installations through evapotranspiration and improvements in infiltration rates. Further understanding should be focused on context-specific considerations of optimal arboriculture practices and improved frameworks to maximize the benefits that urban trees provide LIDs related to the hydrologic cycle.
* [https://www.tandfonline.com/doi/full/10.1080/07011784.2017.1375865 Modelling rainfall interception by urban trees (Huang et al. 2017)]<ref>Huang, J.Y., Black, T.A., Jassal, R.S. and Lavkulich, L.L. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42(4), pp.336-348. https://www.researchgate.net/profile/LesLavkulich/publication/320085997_Modelling_rainfall_interception_by_urban_trees/links/59fc87bf0f7e9b9968bdc715/Modelling-rainfall-interception-by-urban-trees.pdf</ref>
+
* '''[https://www.tandfonline.com/doi/full/10.1080/07011784.2017.1375865 Modelling rainfall interception by urban trees (Huang et al. 2017)]'''<ref>Huang, J.Y., Black, T.A., Jassal, R.S. and Lavkulich, L.L. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42(4), pp.336-348. https://www.researchgate.net/profile/LesLavkulich/publication/320085997_Modelling_rainfall_interception_by_urban_trees/links/59fc87bf0f7e9b9968bdc715/Modelling-rainfall-interception-by-urban-trees.pdf</ref>
 
** Huang, ''et al''. (2017), developed an analytical model to compare rainfall itnerception rates between four deciduous tree species (white oak, Norway maple, green ash and cherry). The ratio of evaporation rate to rainfall rate was the most dynamic differing parameter amongst the trees selected. The study was able to provide some information on improved tree selection in urban environments.
 
** Huang, ''et al''. (2017), developed an analytical model to compare rainfall itnerception rates between four deciduous tree species (white oak, Norway maple, green ash and cherry). The ratio of evaporation rate to rainfall rate was the most dynamic differing parameter amongst the trees selected. The study was able to provide some information on improved tree selection in urban environments.
* [https://onlinelibrary.wiley.com/doi/10.1002/eco.1813 Review of stormwater benefits of urban trees (Kuehler et al. 2017)]<ref>Kuehler, E., Hathaway, J. and Tirpak, A. 2017. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology, 10(3), p.e1813. https://www.srs.fs.usda.gov/pubs/ja/2017/ja_2017_kuehler_001.pdf</ref>
+
* '''[https://onlinelibrary.wiley.com/doi/10.1002/eco.1813 Review of stormwater benefits of urban trees (Kuehler et al. 2017)]'''<ref>Kuehler, E., Hathaway, J. and Tirpak, A. 2017. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology, 10(3), p.e1813. https://www.srs.fs.usda.gov/pubs/ja/2017/ja_2017_kuehler_001.pdf</ref>
 
** Kuehler, ''et al''. (2017), wrote a literature-review to help quantify the benefits of urban trees in stormwater management based on their ability to retain sizable amounts of annual rainfall in their crows, help slow the flow of stormwater runoff, increase infiltration capacity in urban soils and provide transpiration for effectively sequestered runoff. Tree canopy effectiveness rose during short, low intensity storms and lower during more prolonged, heavier events.
 
** Kuehler, ''et al''. (2017), wrote a literature-review to help quantify the benefits of urban trees in stormwater management based on their ability to retain sizable amounts of annual rainfall in their crows, help slow the flow of stormwater runoff, increase infiltration capacity in urban soils and provide transpiration for effectively sequestered runoff. Tree canopy effectiveness rose during short, low intensity storms and lower during more prolonged, heavier events.
* [https://www.mdpi.com/2072-4292/9/11/1202 Estimating tree leaf area density with LIDAR (Li et al. 2017)]<ref>Li, S., Dai, L., Wang, H., Wang, Y., He, Z., & Lin, S. (2017). Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote sensing, 9(11), 1202. https://www.mdpi.com/2072-4292/9/11/1202/pdf</ref>
+
* '''[https://www.mdpi.com/2072-4292/9/11/1202 Estimating tree leaf area density with LIDAR (Li et al. 2017)]<ref>Li, S., Dai, L., Wang, H., Wang, Y., He, Z., & Lin, S. (2017). Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote sensing, 9(11), 1202. https://www.mdpi.com/2072-4292/9/11/1202/pdf'''</ref>
 
** Li, ''et al''. (2017), developed a study to determine an effective means for leaf area density (LAD) estimation of a canopy of trees using LiDAR data and ground measured leaf area index (LAI) . Accuracy levels were high determining both characteristics of the tree stand and spatial resolution from their utilized voxel-based canopy profiling (VCP) should be used as an effective estimator of voxel size in this modal going forward.
 
** Li, ''et al''. (2017), developed a study to determine an effective means for leaf area density (LAD) estimation of a canopy of trees using LiDAR data and ground measured leaf area index (LAI) . Accuracy levels were high determining both characteristics of the tree stand and spatial resolution from their utilized voxel-based canopy profiling (VCP) should be used as an effective estimator of voxel size in this modal going forward.
* [https://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/biophysical-parameters/9162 Optical Leaf Area Index In-situ Measurement (Leblanc 2011)]<ref>Abuelgasim, A. A., & Leblanc, S. G. (2011). Leaf area index mapping in northern Canada. International journal of remote sensing, 32(18), 5059-5076. https://www.academia.edu/download/55035075/Leaf_area_index_mapping_in_northern_Canada.pdf</ref>
+
* '''[https://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/biophysical-parameters/9162 Optical Leaf Area Index In-situ Measurement (Leblanc 2011)]<ref>Abuelgasim, A. A., & Leblanc, S. G. (2011). Leaf area index mapping in northern Canada. International journal of remote sensing, 32(18), 5059-5076. https://www.academia.edu/download/55035075/Leaf_area_index_mapping_in_northern_Canada.pdf'''</ref>
** Abuelgasim, A. and Leblanc, S. G. (2011), discuss how  NRCan have developed methods to measure the leaf density in vegetation canopies with minimum destructive sampling. The measured quantity is, Leaf Area
+
** Abuelgasim, A. and Leblanc, S. G. (2011), discuss how  NRCan have developed methods to measure the leaf density in vegetation canopies with minimum destructive sampling. The measured quantity is, Leaf Area Index (LAI) that is used in estimates of carbon absorption by plants.  
Index (LAI) that is used in estimates of carbon absorption by plants.  
+
* '''[https://www.wastormwatercenter.org/project/tree-project/ Washington Stormwater Center Tree Project]<ref>Washington Stormwater Center. 2022. Tree Project. https://www.wastormwatercenter.org/project/tree-project/'''</ref>
* [https://www.wastormwatercenter.org/project/tree-project/ Washington Stormwater Center Tree Project]<ref>Washington Stormwater Center. 2022. Tree Project. https://www.wastormwatercenter.org/project/tree-project/</ref>
   
**The Washington Stormwater Center, conducts their own research on the effectiveness of LID installations, assists homeowners, businesses and organizations with permit assistance for stormwater management and pollution prevention installations, discuss emerging SWM technologies and provide Technology Assessment Protocol - Ecology (TAPE) certification for Washington State.
 
**The Washington Stormwater Center, conducts their own research on the effectiveness of LID installations, assists homeowners, businesses and organizations with permit assistance for stormwater management and pollution prevention installations, discuss emerging SWM technologies and provide Technology Assessment Protocol - Ecology (TAPE) certification for Washington State.
  

Navigation menu