Flow through perforated pipe
Manufacturers of perforated pipe are often able to provide the open area per meter length.
Where:d is the coefficient of discharge (0.61 for a sharp edged orifice),
- B is the clogging factor (between 0.5 to calculate a for matured installation and 1 to calculate a new perfectly performing BMP),
- Cd is the coefficient of discharge (usually 0.61 for the sharp edge created by relatively thin pipe walls),
- Ao is the total open area per unit length of pipe (m2/m),
- g is acceleration due to gravity (m/s2)
- Σ d is the total depth of bioretention components over the perforated pipe (mm) (e.g. ponding/mulch/filter media/choker layer),
Example calculation[edit]
A part used roll of 100 mm diameter perforated pipe appears long enough to use for a stormwater planter project. The initial design for the planters includes 750 mm depth of filter medium, 50 mm rock mulch, and a further ponding of 300 mm. Upon inspection the pipe is found to have perforations of 8 x 1.5 mm on six sides, repeated every 3 cm along the pipe. To calculate the maximum flow rate, first the open area per meter is calculated: Then: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{max, p}=0.5\times 0.61\times 0.0024\ m^{2}\m\sqrt{2\cdot 9.81\ m\s^{2}\cdot \sum 1.1 m}}