Difference between revisions of "Stormwater planters"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
m
Line 15: Line 15:
 
rect 195 1235 528 1250 [[Choking layer]]
 
rect 195 1235 528 1250 [[Choking layer]]
 
rect 195 1250 528 1305 [[Reservoir_gravel|Reservoir]]
 
rect 195 1250 528 1305 [[Reservoir_gravel|Reservoir]]
 +
 +
 +
rect 152 1166 340 1189 [[mulch]]
 +
rect 65 1164 538 1190 [[mulch]]
 +
rect 341 1104 363 1303 [[Overflow]]
 +
rect 152 1191 339 1301 [[Biomedia]]
 +
rect 366 1194 541 1302 [[Biomedia]]
 +
poly 162 1305 533 1307 352 1343 [[Underdrains]]
 +
rect 229 1162 151 1079 [[Grasses]]
 +
rect 227 1019 340 1164 [[Perennials]]
 +
rect 369 972 483 1162 [[Shrubs]]
 +
poly 139 1158 149 1155 151 1303 352 1343 542 1305 541 1165 550 1161 553 1311 354 1355 139 1311 [[Liner]]
 +
 
</imagemap>
 
</imagemap>
 
Over subsurface infrastructure, soils prone to subsidence, or pollution hotspots, it may be necessary to prevent all [[infiltration]]. These BMPs can also be squeezed into tight urban spaces, adjacent to buildings and within the usual setbacks required for infiltrating facilities. Stormwater planters can also be used as a means of providing building-integrated LID by capturing a portion of the rainwater from the rooftop.  
 
Over subsurface infrastructure, soils prone to subsidence, or pollution hotspots, it may be necessary to prevent all [[infiltration]]. These BMPs can also be squeezed into tight urban spaces, adjacent to buildings and within the usual setbacks required for infiltrating facilities. Stormwater planters can also be used as a means of providing building-integrated LID by capturing a portion of the rainwater from the rooftop.  

Revision as of 23:14, 18 March 2018

An above ground planter with downspout and overflow illustrated.
ShrubsShrubsPerennialsPerennialsGrassesGrassesForebaysOverflowOverflowMulchFilter mediaChoking layerReservoirMulchMulchOverflowBiomediaBiomediaUnderdrainsGrassesPerennialsShrubsLiner
This is an image map of a stormwater planter, clicking on components will load the appropriate article.

Over subsurface infrastructure, soils prone to subsidence, or pollution hotspots, it may be necessary to prevent all infiltration. These BMPs can also be squeezed into tight urban spaces, adjacent to buildings and within the usual setbacks required for infiltrating facilities. Stormwater planters can also be used as a means of providing building-integrated LID by capturing a portion of the rainwater from the rooftop. This type of cell can be constructed above grade in any waterproof and structurally sound container, e.g. in cast concrete or a metal tank.

Overview[edit]

Stormwater planters are an ideal technology for:

  • Sites which cannot infiltrate water owing to contaminated soils or shallow bedrock,
  • Zero-lot-line developments such as condos or dense urban infill.

The fundamental components of a stormwater planter are:

The design may benefit from:

Planning Considerations[edit]

Design[edit]

Storage media[edit]

Storage media

Underdrain[edit]

Underdrain

Planting[edit]

Stormwater planters routinely capture only rainwater flowing from adjacent rooftops. This means that salt may be less of a concern than in Bioretention: Parking lots or Bioretention: Streetscapes. The plant lists are still a good place to start when selecting species for LID in Ontario.

Surface[edit]

As stormwater planters are often quite small and receive very rapid flow, both a level spreader and the use of stone mulch are strongly recommended.

Gallery[edit]

Performance[edit]

Starting after TRIECA (end March) members of STEP will be undertaking a literature review on the performance of our most popular BMPs. The results will be combined with the information we have to date from the development of the Treatment Train Tool and agreed performance metrics established. Until then, please feel free to continue to ask questions via email or the feedback box below.

Water quality [1] [2] [3]

See Also[edit]


Proprietary links[edit]

A number of precast modules exist to contain treatment media. As many of these systems are enclosed water balance calculations may be erroneous where evapotranspiration is constrained. In our effort to make this guide as functional as possible, we have decided to include proprietary systems and links to manufacturers websites.
Inclusion of such links does not constitute endorsement by the Sustainable Technologies Evaluation Program.
Lists are ordered alphabetically; link updates are welcomed using the form below.


  1. Macnamara, J.; Derry, C. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters. Water 2017, 9, 907.;doi:10.3390/w9110907
  2. Lucke, T., & Nichols, P. W. B. (2015). The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Science of The Total Environment, 536, 784–792. https://doi.org/10.1016/J.SCITOTENV.2015.07.142
  3. Macnamara, J.; Derry, C. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters. Water 2017, 9, 907. doi:10.3390/w9110907