Changes

Jump to navigation Jump to search
no edit summary
Line 1: Line 1:  +
These sizing equations are suggested for use in calculating the capacity of swales which have a larger proportion of surface flow. i.e. grass swales, rather than [[bioswales]]. <br>
 +
In many cases the length of swale required will exceed the available space, so that an underground [[infiltration trenches|infiltration trench]] or a [[Dry ponds| dry pond]] will be a preferred solution.
    
===Triangular channel===
 
===Triangular channel===
 
Sizing a triangular channel for complete volume retention:
 
Sizing a triangular channel for complete volume retention:
   −
<math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}}  \right )^{\frac{5}{8}}f}</math>
+
<math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}}  \right )^{\frac{5}{8}}q}</math>
    
===Trapezoidal channel===
 
===Trapezoidal channel===
:<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}f}</math>
+
Sizing a trapezoidal channel for complete volume retention:
 +
<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}q}</math>
   −
[[category:modeling]]
+
{{Plainlist|1=Where:
 +
*''L'' = length of swale in m
 +
*''Q<sub>p</sub>'' = peak flow of the storm to be controlled, in m<sup>3</sup>/s
 +
*''m'' = swale side slope (m/m)
 +
*''S'' = the longitudinal slope (m/m)
 +
*''n'' = Manning's coefficient (dimensionless)
 +
*''b'' = bottom width of trapezoidal swale, in m.
 +
* ''q'' = flow per unit width (m<sup>2</sup>/s)}}
 +
 
 +
 
 +
 
 +
----
 +
[[Category:Infiltration]]
 +
[[Category:Green infrastructure]]
 +
[[Category:Modeling]]

Navigation menu