Changes

Jump to navigation Jump to search
Line 5: Line 5:     
==Overview==
 
==Overview==
Given that [[Bioretention]] is a widely used name and a general "catch-all" term for most vegetated LID practices that temporarily store stormwater runoff in depressed planting beds there are a number of configurations of the feature that can be used in various contexts and environments. Depending on native soil infiltration rate and physical constraints, the facility may be designed without an [[underdrain]] for [[Bioretention: Full infiltration|full infiltration]], with an underdrain for [[Bioretention: Partial infiltration|partial infiltration]], or with an impermeable [[liner]] and underdrain for [[Stormwater planters|no infiltration/filtration only]] (i.e., a [[stormwater planters]] or biofilter) design. STEP has prepared life cycle costs estimates for each design configuration, based on a 2,000 m<sup>2</sup> asphalt drainage area, runoff control target of 25 mm depth and 72 hour drainage period, for comparison which can be viewed below. To generate your own life cycle cost estimates customized to the development context, design criteria, and constraints applicable to your site, access the updated [https://sustainabletechnologies.ca/lid-lcct/ LID Life Cycle Costing Tool (LCCT) here].
+
Given that [[Bioretention]] is a widely used name and a general "catch-all" term for most vegetated LID practices that temporarily store stormwater runoff in depressed planting beds there are a number of configurations of the feature that can be used in various contexts and environments. Depending on native soil infiltration rate and physical constraints, the facility may be designed without an [[underdrain]] for [[Bioretention: Full infiltration|full infiltration]], with an underdrain for [[Bioretention: Partial infiltration|partial infiltration]], or with an impermeable [[liner]] and underdrain for [[Stormwater planters|no infiltration/filtration only]] (i.e., a [[stormwater planters]] or biofilter) design. Optional components include a flow restrictor to control the release rate of the facility, and surface drains to safely convey flows in excess of the storage capacity of the design. STEP has prepared life cycle costs estimates for each design configuration, based on a 2,000 m<sup>2</sup> asphalt drainage area, runoff control target of 25 mm depth and 72 hour drainage period, for comparison which can be viewed below. To generate your own life cycle cost estimates customized to the development context, design criteria, and constraints applicable to your site, access the updated [https://sustainabletechnologies.ca/lid-lcct/ LID Life Cycle Costing Tool (LCCT) here].
    
==Design Assumptions==
 
==Design Assumptions==

Navigation menu