Changes

Jump to navigation Jump to search
Line 41: Line 41:     
==Additives for enhanced phosphorous removal==
 
==Additives for enhanced phosphorous removal==
Particulate phosphorus is removed to a good extent in LIDs due to the sedimentation and filtration mechanisms offered by these features. To further improve the removal of total phosphorus, the removal of dissolved phosphorus is targeted. As explained in the previous section, adsorption is the main removal mechanism for dissolved phosphorus and aluminum and iron are the main sorptive elements.  Therefore, including [[Additives| additives]] in filter media blends can enhance phosphorus retention.  Examples of such [[Additives| additives]] are [[Iron filings (ZVI)|iron filings]] or zero valent iron, iron-enriched or [[red sand|“red” sand]], and [[water treatment residuals]]. Other [[Additives| additives]] that enhance filter media sorption capacity are [[biochar]], [[Bold & Gold]], [[Smart Sponge]], and [[sorbtive media| Sorbtive Media]].  See [[Additives]] for further details and links.
+
Particulate phosphorus is removed to a good extent in LIDs due to the sedimentation and filtration mechanisms offered by these features. To further improve the removal of total phosphorus, the removal of dissolved phosphorus is targeted. As explained in the previous section, adsorption is the main removal mechanism for dissolved phosphorus and aluminum and iron are the main sorptive elements.  Therefore, including [[Additives| additives]] in filter media blends can enhance phosphorus retention.  Examples of such [[Additives| additives]] are [[Iron filings (ZVI)|iron filings]] or zero valent iron, iron-enriched or [[red sand|“red” sand]], and [[water treatment residuals]]. Other [[Additives| additives]] that enhance filter media sorption capacity are [[biochar]], [[Bold & Gold]], [[Smart Sponge]], and [[sorbtive media| Sorbtive Media]].  See [[Additives]] page for further details and links.
    
Determining when additive enhanced filter media needs replacing or maintenance represents a new challenge for stormwater asset managers, as there are no suitable visual indicators.  Erickson et al. (2018) suggest effluent sampling and laboratory testing to identify when enhanced filter media pollutant retention is waning, or periodic sampling and batch (laboratory) testing of filter media to directly measure its capacity to retain the targeted pollutants.<ref>Erickson, A.J., Taguchi, V.J., Gulliver, J.S. 2018. The Challenge of Maintaining Stormwater Control Measures: A Synthesis of Recent Research and Practitioner Experience. Sustainability. 2018, 10, 3666. https://www.mdpi.com/2071-1050/10/10/3666 </ref>
 
Determining when additive enhanced filter media needs replacing or maintenance represents a new challenge for stormwater asset managers, as there are no suitable visual indicators.  Erickson et al. (2018) suggest effluent sampling and laboratory testing to identify when enhanced filter media pollutant retention is waning, or periodic sampling and batch (laboratory) testing of filter media to directly measure its capacity to retain the targeted pollutants.<ref>Erickson, A.J., Taguchi, V.J., Gulliver, J.S. 2018. The Challenge of Maintaining Stormwater Control Measures: A Synthesis of Recent Research and Practitioner Experience. Sustainability. 2018, 10, 3666. https://www.mdpi.com/2071-1050/10/10/3666 </ref>

Navigation menu