Changes

Jump to navigation Jump to search
Line 379: Line 379:  
|Surface [[infiltration]] rate is < 250 mm/h  
 
|Surface [[infiltration]] rate is < 250 mm/h  
 
|
 
|
*Sweep and thoroughly vacuum with a pure vacuum sweeper to remove accumulated sediment. Replace [[OPSS aggregates|joint fill material]] removed through vacuuming. Pretreatment of the surface of slow draining pavements (e.g., water-assisted techniques, additional sweeping) prior to vacuuming may be warranted where surface [[clogging]] of joints or pores is visible. If surface drainage performance remains unacceptable, remove all pavers, [[Choker layer|bedding]] and joint fill and top 5 cm (2”) of base [[Reservoir aggregate|aggregate]] and replace with new materials that meet design specifications. A promising option for rehabilitating clogged porous asphalt identified through recent research by Winston et al. (2016) is milling and replacement of the top 2.5 cm of the surface course, which was found to successfully restore drainage function to a 21 year old installation in northern Sweden.<ref> Winston, R.J., Al-Rubaei, A.M., Blecken, G.T., Viklander, M., Hunt, W.F. 2016. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate - The effects of street sweeping, vacuum cleaning, high pressure washing and milling. Journal of Environmental Management. 169 (2016) 132-144. https://www.sciencedirect.com/science/article/pii/S0301479715304412?via%3Dihub </ref>
+
*Sweep and thoroughly vacuum with a pure vacuum sweeper to remove accumulated sediment. Replace [[OPSS aggregates|joint fill material]] removed through vacuuming. Pretreatment of the surface of slow draining pavements (e.g., mechanical sweeping and/or pressure washing techniques) prior to vacuuming may be warranted where surface [[clogging]] of joints or pores is visible. If surface drainage performance remains unacceptable, remove all pavers, [[Choker layer|bedding]] and joint fill and top 5 cm (2”) of base [[Reservoir aggregate|aggregate]] and replace with new materials that meet design specifications. A promising option for rehabilitating clogged porous asphalt identified through recent research by Winston et al. (2016) is milling and replacement of the top 2.5 cm of the surface course, which was found to successfully restore drainage function to a 21 year old installation in northern Sweden.<ref> Winston, R.J., Al-Rubaei, A.M., Blecken, G.T., Viklander, M., Hunt, W.F. 2016. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate - The effects of street sweeping, vacuum cleaning, high pressure washing and milling. Journal of Environmental Management. 169 (2016) 132-144. https://www.sciencedirect.com/science/article/pii/S0301479715304412?via%3Dihub </ref>
 
|-
 
|-
 
|'''[[Vegetation]]'''
 
|'''[[Vegetation]]'''

Navigation menu