Changes

Jump to navigation Jump to search
Line 107: Line 107:  
{{Plainlist|1=Where:
 
{{Plainlist|1=Where:
 
*f' = [[Design infiltration rate]] of underlying native soil (m/h)
 
*f' = [[Design infiltration rate]] of underlying native soil (m/h)
*t = [[Drainage time]] (h), time required to fully drain the active storage components of the practice (i.e. surface ponding and infiltration water storage depths), based on local criteria or long term average inter-event period for the location}}<br>
+
*t = [[Drainage time]] (h), time required to fully drain the internal water storage reservoir of the practice, based on local criteria or long term average inter-event period for the location}}<br>
 
For practices with an underdrain where the perforated pipe is installed on the bottom and connected to a riser (e.g., standpipe and two 90 degree couplings), infiltration water storage is provided by the storage reservoir depth between the inverts of the riser outlet (i.e invert elevation of the top 90 degree coupling) and reservoir bottom, and is calculated the same way as above. See [[Bioretention: Internal water storage]] page for guidance on water quality treatment benefits of internal water storage reservoirs or zones in partial infiltration bioretention designs.<br>
 
For practices with an underdrain where the perforated pipe is installed on the bottom and connected to a riser (e.g., standpipe and two 90 degree couplings), infiltration water storage is provided by the storage reservoir depth between the inverts of the riser outlet (i.e invert elevation of the top 90 degree coupling) and reservoir bottom, and is calculated the same way as above. See [[Bioretention: Internal water storage]] page for guidance on water quality treatment benefits of internal water storage reservoirs or zones in partial infiltration bioretention designs.<br>
  

Navigation menu