Changes

Jump to navigation Jump to search
Line 451: Line 451:  
* '''[https://www.mdpi.com/2072-4292/9/11/1202 Estimating tree leaf area density with LIDAR (Li et al. 2017)]<ref>Li, S., Dai, L., Wang, H., Wang, Y., He, Z., & Lin, S. (2017). Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote sensing, 9(11), 1202. https://www.mdpi.com/2072-4292/9/11/1202/pdf'''</ref>
 
* '''[https://www.mdpi.com/2072-4292/9/11/1202 Estimating tree leaf area density with LIDAR (Li et al. 2017)]<ref>Li, S., Dai, L., Wang, H., Wang, Y., He, Z., & Lin, S. (2017). Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote sensing, 9(11), 1202. https://www.mdpi.com/2072-4292/9/11/1202/pdf'''</ref>
 
** Li, ''et al''. (2017), determine an effective means for leaf area density (LAD) estimation of a canopy of magnolia trees using high-resolution LiDAR data and ground measured leaf area index (LAI).
 
** Li, ''et al''. (2017), determine an effective means for leaf area density (LAD) estimation of a canopy of magnolia trees using high-resolution LiDAR data and ground measured leaf area index (LAI).
* '''[https://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/biophysical-parameters/9162 Optical Leaf Area Index In-situ Measurement (Leblanc 2011)]<ref>Abuelgasim, A. A., & Leblanc, S. G. (2011). Leaf area index mapping in northern Canada. International journal of remote sensing, 32(18), 5059-5076. https://www.academia.edu/download/55035075/Leaf_area_index_mapping_in_northern_Canada.pdf'''</ref>
   
* '''[https://www.tandfonline.com/doi/full/10.1080/07011784.2017.1375865 Modelling rainfall interception by urban trees (Huang et al. 2017)]'''<ref>Huang, J.Y., Black, T.A., Jassal, R.S. and Lavkulich, L.L. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42(4), pp.336-348. https://www.researchgate.net/profile/LesLavkulich/publication/320085997_Modelling_rainfall_interception_by_urban_trees/links/59fc87bf0f7e9b9968bdc715/Modelling-rainfall-interception-by-urban-trees.pdf</ref>
 
* '''[https://www.tandfonline.com/doi/full/10.1080/07011784.2017.1375865 Modelling rainfall interception by urban trees (Huang et al. 2017)]'''<ref>Huang, J.Y., Black, T.A., Jassal, R.S. and Lavkulich, L.L. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42(4), pp.336-348. https://www.researchgate.net/profile/LesLavkulich/publication/320085997_Modelling_rainfall_interception_by_urban_trees/links/59fc87bf0f7e9b9968bdc715/Modelling-rainfall-interception-by-urban-trees.pdf</ref>
 
** Huang, ''et al''. (2017), developed an analytical model to compare rainfall interception rates between four deciduous tree species (white oak, Norway maple, green ash and cherry). The ratio of evaporation rate to rainfall rate was the most dynamic differing parameter amongst the trees selected. The study was able to provide some information on improved tree selection in urban environments.
 
** Huang, ''et al''. (2017), developed an analytical model to compare rainfall interception rates between four deciduous tree species (white oak, Norway maple, green ash and cherry). The ratio of evaporation rate to rainfall rate was the most dynamic differing parameter amongst the trees selected. The study was able to provide some information on improved tree selection in urban environments.
 +
* '''[https://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/biophysical-parameters/9162 Optical Leaf Area Index In-situ Measurement (Leblanc 2011)]<ref>Abuelgasim, A. A., & Leblanc, S. G. (2011). Leaf area index mapping in northern Canada. International journal of remote sensing, 32(18), 5059-5076. https://www.academia.edu/download/55035075/Leaf_area_index_mapping_in_northern_Canada.pdf'''</ref>
 
** Abuelgasim, A. and Leblanc, S. G. (2011), discuss how  NRCan have developed methods to measure the leaf density in vegetation canopies with minimum destructive sampling. The measured quantity, Leaf Area Index (LAI), is used in estimates of carbon absorption by plants.  
 
** Abuelgasim, A. and Leblanc, S. G. (2011), discuss how  NRCan have developed methods to measure the leaf density in vegetation canopies with minimum destructive sampling. The measured quantity, Leaf Area Index (LAI), is used in estimates of carbon absorption by plants.  
 
* '''[https://www.wastormwatercenter.org/project/tree-project/ Washington Stormwater Center Tree Project]<ref>Washington Stormwater Center. 2022. Tree Project. https://www.wastormwatercenter.org/project/tree-project/'''</ref>
 
* '''[https://www.wastormwatercenter.org/project/tree-project/ Washington Stormwater Center Tree Project]<ref>Washington Stormwater Center. 2022. Tree Project. https://www.wastormwatercenter.org/project/tree-project/'''</ref>

Navigation menu