Changes

Jump to navigation Jump to search
Line 446: Line 446:  
**Tirpak ''et al.'' (2018), conducted a study on tree health in bioretention systems in southeastern U.S. Of the 6 species studied, only 1 showed greater health when grown in bioretention media compared to urban trees not planted in bioretention systems. Results show that species selection should be based on bioretention filter media analysis and compatability with the growing conditions found in bioretention systems.
 
**Tirpak ''et al.'' (2018), conducted a study on tree health in bioretention systems in southeastern U.S. Of the 6 species studied, only 1 showed greater health when grown in bioretention media compared to urban trees not planted in bioretention systems. Results show that species selection should be based on bioretention filter media analysis and compatability with the growing conditions found in bioretention systems.
 
* '''[http://dx.doi.org/10.1016/j.landurbplan.2017.02.017 Role of trees in urban stormwater management (Berland et al. 2017)]'''<ref>Berland, A., Shiflett, S.A., Shuster, W.D., Garmestani, A.S., Goddard, H.C., Herrmann, D.L. and Hopton, M.E. 2017. The role of trees in urban stormwater management. Landscape and urban planning, 162, pp.167-177. https://pdf.sciencedirectassets.com/271853/1-s2.0-S0169204617X00030/1-s2.0-S0169204617300464/Adam_Berland_green_infrastructure_2017.pdf</ref>
 
* '''[http://dx.doi.org/10.1016/j.landurbplan.2017.02.017 Role of trees in urban stormwater management (Berland et al. 2017)]'''<ref>Berland, A., Shiflett, S.A., Shuster, W.D., Garmestani, A.S., Goddard, H.C., Herrmann, D.L. and Hopton, M.E. 2017. The role of trees in urban stormwater management. Landscape and urban planning, 162, pp.167-177. https://pdf.sciencedirectassets.com/271853/1-s2.0-S0169204617X00030/1-s2.0-S0169204617300464/Adam_Berland_green_infrastructure_2017.pdf</ref>
** Berland ''et al''., provided encouraging signs from their literature review noting the importance of urban trees in stormwater control and management. Their review found that trees are compatible with various GSI technologies and may improve the function of these installations through evapotranspiration and improvements in infiltration rates. Further understanding should be focused on context-specific considerations of optimal arboriculture practices and improved frameworks to maximize the benefits that urban trees provide LIDs related to the hydrologic cycle.
+
** Berland ''et al''., call for greater consideration of arboriculture as a stormwater control measure in their literature review, noting that trees are compatible with various types of LID facilities and may improve the function of these installations through evapotranspiration and maintaining or improving drainage performance.
 
* '''[https://www.tandfonline.com/doi/full/10.1080/07011784.2017.1375865 Modelling rainfall interception by urban trees (Huang et al. 2017)]'''<ref>Huang, J.Y., Black, T.A., Jassal, R.S. and Lavkulich, L.L. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42(4), pp.336-348. https://www.researchgate.net/profile/LesLavkulich/publication/320085997_Modelling_rainfall_interception_by_urban_trees/links/59fc87bf0f7e9b9968bdc715/Modelling-rainfall-interception-by-urban-trees.pdf</ref>
 
* '''[https://www.tandfonline.com/doi/full/10.1080/07011784.2017.1375865 Modelling rainfall interception by urban trees (Huang et al. 2017)]'''<ref>Huang, J.Y., Black, T.A., Jassal, R.S. and Lavkulich, L.L. 2017. Modelling rainfall interception by urban trees. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 42(4), pp.336-348. https://www.researchgate.net/profile/LesLavkulich/publication/320085997_Modelling_rainfall_interception_by_urban_trees/links/59fc87bf0f7e9b9968bdc715/Modelling-rainfall-interception-by-urban-trees.pdf</ref>
 
** Huang, ''et al''. (2017), developed an analytical model to compare rainfall itnerception rates between four deciduous tree species (white oak, Norway maple, green ash and cherry). The ratio of evaporation rate to rainfall rate was the most dynamic differing parameter amongst the trees selected. The study was able to provide some information on improved tree selection in urban environments.
 
** Huang, ''et al''. (2017), developed an analytical model to compare rainfall itnerception rates between four deciduous tree species (white oak, Norway maple, green ash and cherry). The ratio of evaporation rate to rainfall rate was the most dynamic differing parameter amongst the trees selected. The study was able to provide some information on improved tree selection in urban environments.

Navigation menu