Changes

Jump to navigation Jump to search
no edit summary
Line 1: Line 1: −
This method of determining [[design infiltration rate]] is only approved for sandy native soils with d<sub>10</sub> between 0.1 - 2.5 mm (i.e. soils to which the Hazen formula is applicable)<ref>San Francisco Public Utilities Commission. (2017). Determination of Design Infiltration Rates for the Sizing of Infiltration‐based Green Infrastructure Facilities. Retrieved from http://sfwater.org/modules/showdocument.aspx?documentid=9681</ref>.  
+
This method of determining [[design infiltration rate]] is only suitable for coarse-textured native soils with d<sub>10</sub> between 0.1 - 2.5 mm (i.e. soils to which the Hazen formula is applicable)<ref>San Francisco Public Utilities Commission. (2017). Determination of Design Infiltration Rates for the Sizing of Infiltration‐based Green Infrastructure Facilities. Retrieved from http://sfwater.org/modules/showdocument.aspx?documentid=9681</ref>.  
    
'''This method must not be applied within areas of fill or in regions where hydraulic conductivity is controlled by vertical fractures in the soil matrix.'''  
 
'''This method must not be applied within areas of fill or in regions where hydraulic conductivity is controlled by vertical fractures in the soil matrix.'''  
Line 7: Line 7:  
#* For [[bioretention]] facilities, analyze each defined layer below the proposed facility bottom to a depth of at least 3 times the maximum ponding depth, but not less than 1 m.  
 
#* For [[bioretention]] facilities, analyze each defined layer below the proposed facility bottom to a depth of at least 3 times the maximum ponding depth, but not less than 1 m.  
 
#* For [[permeable paving]], analyze each defined layer below the proposed facility bottom to a depth of at least 3 times the maximum depth of water within the base course, but not less than 1 m.  
 
#* For [[permeable paving]], analyze each defined layer below the proposed facility bottom to a depth of at least 3 times the maximum depth of water within the base course, but not less than 1 m.  
#* For other types of infiltration facilities serving drainage areas up to 4 Ha, analyze each defined layer below the proposed facility bottom to a depth of at least 2.5 times the maximum depth of water in the facility, but not less than 3 m.  
+
#* For other types of infiltration facilities serving drainage areas up to 4 Ha, analyze each defined layer below the proposed facility bottom to a depth of at least 2.5 times the water storage reservoir depth, but not less than 3 m.  
 
# Submit the soil samples to a certified soil testing laboratory for grain-size, or particle-size distribution analysis according to [https://www.astm.org/Standards/D422.htm ASTM D422] Standard Test Method for Particle-size Analysis of Soils.
 
# Submit the soil samples to a certified soil testing laboratory for grain-size, or particle-size distribution analysis according to [https://www.astm.org/Standards/D422.htm ASTM D422] Standard Test Method for Particle-size Analysis of Soils.
    
===Data Analysis===
 
===Data Analysis===
NB:  The Hazen formula method of estimating soil permeability based on grain size distribution analysis is only suitable for soils with d<sub>10</sub> between 0.1 and 2.5 millimeters <ref>Hazen, A. (1893). Some physical properties of sand and gravel with special reference to the use in filtration. 4th Annual Report, State Board of Health, Boston.</ref>. The soil permeability value estimated using the Hazen method can be considered to be the measured infiltration rate of the soil, f, in mm/h
+
NB:  The Hazen formula method of estimating soil permeability based on grain size distribution analysis is only suitable for coarse-textured soils with d<sub>10</sub> between 0.1 and 2.5 millimeters <ref>Hazen, A. (1893). Some physical properties of sand and gravel with special reference to the use in filtration. 4th Annual Report, State Board of Health, Boston.</ref>. The soil permeability value estimated using the Hazen method can be considered to be the measured infiltration rate of the soil, f, in mm/h
 
:<math>f=C\cdot {\left (d_{10}\right )^{2}}</math>
 
:<math>f=C\cdot {\left (d_{10}\right )^{2}}</math>
   Line 19: Line 19:     
{| class="wikitable"
 
{| class="wikitable"
! colspan =2| Shape factors (C) to yield K in mm/h
+
! colspan =2| Shape factors (C) to yield f in mm/h
 
|-  
 
|-  
 
|Very fine to fine sand
 
|Very fine to fine sand

Navigation menu