Changes

Jump to navigation Jump to search
Line 72: Line 72:  
* Step 7: Multiply the depth of each separate component by the porosity and then sum the total to find the 1 dimensional storage (in mm).
 
* Step 7: Multiply the depth of each separate component by the porosity and then sum the total to find the 1 dimensional storage (in mm).
 
* Step 8: Calculate the required total storage (S<sub>T</sub>, m<sup>3</sup>):
 
* Step 8: Calculate the required total storage (S<sub>T</sub>, m<sup>3</sup>):
<math>S_{T}=RVC_T\times A_c\times 10</math>
+
<math>S_{T}=RVC_T\times A_i\times 10</math>
 
{{Plainlist|1=Where:
 
{{Plainlist|1=Where:
 
*''RVC<sub>T</sub>'' is the runoff volume control target (mm),
 
*''RVC<sub>T</sub>'' is the runoff volume control target (mm),
*''A<sub>c</sub>'' is the catchment area (Ha), and
+
*''A<sub>i</sub>'' is the impervious area within the catchment (Ha), and
 
* 10 is the units correction between m<sup>3</sup> and mm.Ha.}}
 
* 10 is the units correction between m<sup>3</sup> and mm.Ha.}}
 
* Step 9. Divide required storage (m<sup>3</sup>) by the 1 dimensional storage (in m) to find the required footprint area (''A<sub>p</sub>'') for the bioretention in m<sup>2</sup>.  
 
* Step 9. Divide required storage (m<sup>3</sup>) by the 1 dimensional storage (in m) to find the required footprint area (''A<sub>p</sub>'') for the bioretention in m<sup>2</sup>.  

Navigation menu