Changes

Jump to navigation Jump to search
m
Line 135: Line 135:  
#Old infrastructure using old methods
 
#Old infrastructure using old methods
 
*“The built environment of an existing city is continuously changing by maintenance, modification and renewal. This inherent dynamics of the urban environment provide opportunities for retrofitting blue-green measures synergistically with other structural changes in the urban form [15,28,40,41]. Opportunities for retrofitting arise for instance when existing paved areas are removed for works on cables or for sewer rehabilitation [15,28,41], when buildings are renovated, when infill development takes place [28], and with urban renewal projects [40,41]. Linking implementation of blue-green climate adaptation measures with such ‘windows of opportunity’ is greatly beneficial for a reduction of implementation costs [15].”  Voskamp and Van de Ven 2015
 
*“The built environment of an existing city is continuously changing by maintenance, modification and renewal. This inherent dynamics of the urban environment provide opportunities for retrofitting blue-green measures synergistically with other structural changes in the urban form [15,28,40,41]. Opportunities for retrofitting arise for instance when existing paved areas are removed for works on cables or for sewer rehabilitation [15,28,41], when buildings are renovated, when infill development takes place [28], and with urban renewal projects [40,41]. Linking implementation of blue-green climate adaptation measures with such ‘windows of opportunity’ is greatly beneficial for a reduction of implementation costs [15].”  Voskamp and Van de Ven 2015
d. Watershed-scale approaches to LID
+
===Watershed-scale approaches to LID===
 
Single LIDs placed scarcely may not be able to tackle climate change. For this reason, there has to be a (sub)watershed scale effort.  
 
Single LIDs placed scarcely may not be able to tackle climate change. For this reason, there has to be a (sub)watershed scale effort.  
 
+
*“Retrofitting a single blue-green measure is hardly ever a successful strategy to deal with all relevant climate risks. In order to optimally use the potential of blue-green measures in creating urban resilience to flooding, drought and heat stress combinations of blue-green measures, ‘adaptation sets’, have to be implemented. The composition of an effective and cost efficient package of measures depends on the characteristics of the project site.”<ref>Voskamp, I. M., and F. H M Van de Ven. 2015. “Planning Support System for Climate Adaptation: Composing Effective Sets of Blue-Green Measures to Reduce Urban Vulnerability to Extreme Weather Events.” Building and Environment 83. Elsevier Ltd:159–67. https://doi.org/10.1016/j.buildenv.2014.07.018.</ref>
*“Retrofitting a single blue-green measure is hardly ever a successful strategy to deal with all relevant climate risks. In order to optimally use the potential of blue-green measures in creating urban resilience to flooding, drought and heat stress combinations of blue-green measures, ‘adaptation sets’, have to be implemented. The composition of an effective and cost efficient package of measures depends on the characteristics of the project site.”  in Voskamp and Van de Ven 2015
+
* “Four vulnerability reduction capacities are required to effectively create resilience: adaptive, threshold, coping, and recovery capacity. An urban area has different levels of these capacities for pluvial and fluvial flooding, heat stress, and drought. Each type of blue-green measure strengthens these capacities in a different way and to a different degree. A combination of measures is required for all-inclusive climate vulnerability reduction. It depends on the current vulnerability of a site which capacities require strengthening most [15] and, accordingly, which combination of measures is most beneficial to increase resilience to extreme events of a particular site.” <ref>Voskamp, I. M., and F. H M Van de Ven. 2015. “Planning Support System for Climate Adaptation: Composing Effective Sets of Blue-Green Measures to Reduce Urban Vulnerability to Extreme Weather Events.” Building and Environment 83. Elsevier Ltd:159–67. https://doi.org/10.1016/j.buildenv.2014.07.018.</ref>
* “Four vulnerability reduction capacities are required to effectively create resilience: adaptive, threshold, coping, and recovery capacity. An urban area has different levels of these capacities for pluvial and fluvial flooding, heat stress, and drought. Each type of blue-green measure strengthens these capacities in a different way and to a different degree. A combination of measures is required for all-inclusive climate vulnerability reduction. It depends on the current vulnerability of a site which capacities require strengthening most [15] and, accordingly, which combination of measures is most beneficial to increase resilience to extreme events of a particular site.” in Voskamp and Van de Ven 2015
   
* LID BMPs are like a toolbox from which engineers can pick and choose depending on site constraints. But this has to come after a larger scale planning strategy to manage water and other ecosystem spaces.  
 
* LID BMPs are like a toolbox from which engineers can pick and choose depending on site constraints. But this has to come after a larger scale planning strategy to manage water and other ecosystem spaces.  
*“Green infrastructure retrofits, which included street- connected bioretention cells, reduced peak and total stormflow and increased lag times from a suburban residential headwater street. On Klusner Ave, a voluntary participation scheme in which 13.5% of households had rain barrels and rain gardens or street-connected bioretention cells added to their parcels resulted in up to 33% reductions in peak flows, 40% reductions in total storm volumes and desynchronization of peak flow timing compared with an adjacent street where no green infrastructure was installed. Connecting” Jarden et al 2016, also notes: “The results of this study demonstrate promising effectiveness of catchment-scale green infrastructure retrofits in mitigating stormwater run-off from headwater streets. In particular, connection to streets appears to leverage high value out of a limited number of installations. The site of this study is very typical of mid-20th-century American residential development, suggesting that the results achieved here may be possible to replicate in other areas.”
+
*“Green infrastructure retrofits, which included street- connected bioretention cells, reduced peak and total stormflow and increased lag times from a suburban residential headwater street. On Klusner Ave, a voluntary participation scheme in which 13.5% of households had rain barrels and rain gardens or street-connected bioretention cells added to their parcels resulted in up to 33% reductions in peak flows, 40% reductions in total storm volumes and desynchronization of peak flow timing compared with an adjacent street where no green infrastructure was installed. Connecting” <Ref>Jarden, Kimberly M., Anne J. Jefferson, and Jennifer M. Grieser. 2016. “Assessing the Effects of Catchment-Scale Urban Green Infrastructure Retrofits on Hydrograph Characteristics.” Hydrological Processes 30 (10):1536–50. https://doi.org/10.1002/hyp.10736.</ref>also notes: “The results of this study demonstrate promising effectiveness of catchment-scale green infrastructure retrofits in mitigating stormwater run-off from headwater streets. In particular, connection to streets appears to leverage high value out of a limited number of installations. The site of this study is very typical of mid-20th-century American residential development, suggesting that the results achieved here may be possible to replicate in other areas.”
    
==Within Ontario==
 
==Within Ontario==
8,255

edits

Navigation menu