Line 12: |
Line 12: |
| | | |
| ===Climate-related impacts=== | | ===Climate-related impacts=== |
− | Since 1995, Ontario has had a weather-related state of emergency almost every single year <ref>Swiss Re (in collaboration with Institute for Catastrophic Loss Reduction) (2010). Making Flood Insurable for Canadian Homeowners. Available at URL: http://www.iclr.org/images/Making_Flood_Insurable_for_Canada.pdf</ref>. The City of Windsor saw extreme events that caused severe flooding in 2007, 2010, 2016 and 2017 <ref>City of Windsor. 2012. Climate Change Adaptation Plan. Available at URL: http://www.citywindsor.ca/residents/environment/environmental-master-plan/documents/windsor%20climate%20change%20adaptation%20plan.pdf</ref>. The Ottawa region experienced one extreme event every year for five years, and in the Greater Toronto Area (GTA), there have been four extreme rainfall events in the past ten years <ref>Environment Canada. 2014. Climate. Available at URL: http://climate.weather.gc.ca/</ref>. Such high intensity events produce heavy rainfall in relatively short periods of time. While it is reasonable to expect runoff to be produced under such conditions – particularly when rain falls which exceeds a soil’s hydraulic conductivity - the production of stormwater is exacerbated in urban areas where the overwhelming majority of surfaces are impervious. The problems associated with managing stormwater volumes are exacerbated when dense storm sewer networks efficiently convey stormwater runoff volumes from a large contributing upland area to a single outlet location, such as a stormsewer outfall in a river or stream. | + | Since 1995, Ontario has had a weather-related state of emergency almost every single year <ref>Swiss Re (in collaboration with Institute for Catastrophic Loss Reduction) (2010). Making Flood Insurable for Canadian Homeowners. Available at URL: http://www.iclr.org/images/Making_Flood_Insurable_for_Canada.pdf</ref>. The City of Windsor saw extreme events that caused severe flooding in 2007, 2010, 2016 and 2017 <ref>City of Windsor. 2012. Climate Change Adaptation Plan. Available at URL: http://www.citywindsor.ca/residents/environment/environmental-master-plan/documents/windsor%20climate%20change%20adaptation%20plan.pdf</ref>. The Ottawa region experienced one extreme event every year for five years, and in the Greater Toronto Area (GTA), there have been four extreme rainfall events in the past ten years <ref>Environment Canada. 2014. Climate. Available at URL: http://climate.weather.gc.ca/</ref>. Such high intensity events produce heavy rainfall in relatively short periods of time. While it is reasonable to expect runoff to be produced under such conditions – particularly when rain falls which exceeds a soil’s hydraulic conductivity - the production of stormwater is exacerbated in urban areas where the overwhelming majority of surfaces are impervious. The problems associated with managing stormwater volumes are exacerbated when dense storm sewer networks efficiently convey stormwater runoff volumes from a large contributing upland area to a single outlet location, such as a storm-sewer outfall in a river or stream. |
| | | |
| In July 2013, the GTA experienced its most severe storm event in 60 years. Nearly five inches (126 mm) of rain fell in a two-hour period. In comparison, during Hurricane Hazel (a devastating event in 1954 where 81 lives were lost), the two-hour maximum precipitation was 91 mm and the total amount of rainfall was 285 mm over nearly two days <ref>Toronto Star. 2013. Monday’s storm vs. Hurricane Hazel. Available at URL: http://www.thestar.com/opinion/letters_ to_the_editors/2013/07/14/mondays_storm_vs_hurricane_hazel.html</ref>. Conventional municipal drainage systems could not carry stormwater away fast enough. Roads and highways were overcome with floodwater closing major transportation corridors including Highway 427. GO Train passengers were stranded, and power outages and basement flooding were widespread with property damage of more than $1 billion. | | In July 2013, the GTA experienced its most severe storm event in 60 years. Nearly five inches (126 mm) of rain fell in a two-hour period. In comparison, during Hurricane Hazel (a devastating event in 1954 where 81 lives were lost), the two-hour maximum precipitation was 91 mm and the total amount of rainfall was 285 mm over nearly two days <ref>Toronto Star. 2013. Monday’s storm vs. Hurricane Hazel. Available at URL: http://www.thestar.com/opinion/letters_ to_the_editors/2013/07/14/mondays_storm_vs_hurricane_hazel.html</ref>. Conventional municipal drainage systems could not carry stormwater away fast enough. Roads and highways were overcome with floodwater closing major transportation corridors including Highway 427. GO Train passengers were stranded, and power outages and basement flooding were widespread with property damage of more than $1 billion. |
Line 37: |
Line 37: |
| ===Observed to date=== | | ===Observed to date=== |
| * IDF: Changing rainfall intensities affect stormwater runoff timing, peak rates and volumes; Methods have been relying on static IDF curves | | * IDF: Changing rainfall intensities affect stormwater runoff timing, peak rates and volumes; Methods have been relying on static IDF curves |
− | * Increased frequency of 12% and increase intensity of 16% of extreme precipitation events for 1958 - 2007 for the US Northeastern region (Larson et al 2011) | + | * Increased frequency of 12% and increase intensity of 16% of extreme precipitation events for 1958 - 2007 for the US Northeastern region <ref>Larson, L, Nicholas Rajkovich, and Clair Leighton. 2011. “Green Building and Climate Resilience: Understanding Impacts and Preparing for Changing Conditions.” University of Michigan, 260. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:GREEN+BUILDING+AND+CLIMATE+RESILIENCE+Understanding+impacts+and+preparing+for+changing+conditions#0.</ref> |
− | * “Percent changes in the amount of precipitation falling in very heavy events (the heaviest 1 %) from 1958 to 2012 for each region. There is a clear national trend toward a greater amount of precipitation being concentrated in very heavy events, particularly in the Northeast US (71 %) and Midwest US (37 %). (Figure source: updated from Karl et al. 2009c )” Melillo et al 2014 | + | * “Percent changes in the amount of precipitation falling in very heavy events (the heaviest 1 %) from 1958 to 2012 for each region. There is a clear national trend toward a greater amount of precipitation being concentrated in very heavy events, particularly in the Northeast US (71 %) and Midwest US (37 %).” <ref>Melillo, Jerry M, T C Richmond, Gary W Yohe, and US National Climate Assessment. 2014. Climate Change Impacts in the United States: The Third National Climate Assessment. US Global Change Research Program. Vol. 841. https://doi.org/10.7930/j0z31WJ2.</ref> |
− | * “As for the temporal trends, significant warming trends are detected throughout the province of ON and the overall trend in annual mean temperature varies largely between 0.01 and 0.02 ∘C year–1. Increasing trends in annual rainfall (by 1 – 3 mm/year) and total precipitation (by 1 – 4 mm/year) are detected at the vast majority of gauged stations, but no significant trends in annual snowfall are identified at most of the stations.” in Wang et al 2015 (Meteorological Applications Journal) | + | * “As for the temporal trends, significant warming trends are detected throughout the province of ON and the overall trend in annual mean temperature varies largely between 0.01 and 0.02 ∘C year–1. Increasing trends in annual rainfall (by 1 – 3 mm/year) and total precipitation (by 1 – 4 mm/year) are detected at the vast majority of gauged stations, but no significant trends in annual snowfall are identified at most of the stations.”<ref>Wang, Xiuquan, Guohe Huang, and Jinliang Liu. 2016. “Observed Regional Climatic Changes over Ontario, Canada, in Response to Global Warming.” Meteorological Applications 23 (1):140–49. https://doi.org/10.1002/met.1541.</ref> |
| * “Extreme downpours are now happening 30 percent more often nationwide than in 1948. In other words, large rain or snowstorms that happened once every 12 months, on average, in the middle of the 20th century now happen every nine months. Moreover, the largest annual storms now produce 10 percent more precipitation, on average.” Madsen et al 2012 a study in the US | | * “Extreme downpours are now happening 30 percent more often nationwide than in 1948. In other words, large rain or snowstorms that happened once every 12 months, on average, in the middle of the 20th century now happen every nine months. Moreover, the largest annual storms now produce 10 percent more precipitation, on average.” Madsen et al 2012 a study in the US |
| * “Extreme weather events including prolonged heat waves, torrential rainstorms, windstorms, and drought have increased throughout Ontario in recent years (Ontario, 2011). The frequency of very hot days (above 32°C) is expected to increase by 2.4-fold in Ontario by the late 21st century (Vavrus and Dorn 2009)”. cited in Thunder Bay, 2015 | | * “Extreme weather events including prolonged heat waves, torrential rainstorms, windstorms, and drought have increased throughout Ontario in recent years (Ontario, 2011). The frequency of very hot days (above 32°C) is expected to increase by 2.4-fold in Ontario by the late 21st century (Vavrus and Dorn 2009)”. cited in Thunder Bay, 2015 |