Changes

Jump to navigation Jump to search
Line 159: Line 159:  
| [[Green roofs|Green]] and [[blue roofs]]
 
| [[Green roofs|Green]] and [[blue roofs]]
 
|  
 
|  
*A study based in Toronto predicted that there could a decrease in peak flow reduction provided by green roofs in the future (Guram & Bashir, 2024) <ref nmae=Guram>Guram, S., & Bashir, R. (2024). Designing effective low-impact developments for a changing climate: A HYDRUS-based vadose zone modeling approach. Water, 16(13), 1803. https://doi.org/10.3390/w16131803</ref>.
+
*A study based in Toronto predicted that there could a decrease in peak flow reduction provided by green roofs in the future (Guram & Bashir, 2024) <ref name=Guram>Guram, S., & Bashir, R. (2024). Designing effective low-impact developments for a changing climate: A HYDRUS-based vadose zone modeling approach. Water, 16(13), 1803. https://doi.org/10.3390/w16131803</ref>.
 
*Knappe et al. (2023) <ref>Knappe, S., van Afferden, M., & Friesen, J. (2023). GR2L: A robust dual-layer [[green roof]] water balance model to assess multifunctionality aspects under climate variability. Frontiers in Climate, 5, Article 1115595. https://doi.org/10.3389/fclim.2023.1115595</ref> modelled dual-layer (upper vegetated substrate layer and a lower retention layer separated by a distribution fleece) roof designs to investigate water balance outcomes (storage, outflow, evapotranspiration) under wet and dry climactic extremes. During extreme climate years in Germany, the roof with the largest retention volume was estimated to provide more evaporative cooling and retention of heavy rainfall events without outflow in summer, demonstrating potential for a more climate-resilient design.
 
*Knappe et al. (2023) <ref>Knappe, S., van Afferden, M., & Friesen, J. (2023). GR2L: A robust dual-layer [[green roof]] water balance model to assess multifunctionality aspects under climate variability. Frontiers in Climate, 5, Article 1115595. https://doi.org/10.3389/fclim.2023.1115595</ref> modelled dual-layer (upper vegetated substrate layer and a lower retention layer separated by a distribution fleece) roof designs to investigate water balance outcomes (storage, outflow, evapotranspiration) under wet and dry climactic extremes. During extreme climate years in Germany, the roof with the largest retention volume was estimated to provide more evaporative cooling and retention of heavy rainfall events without outflow in summer, demonstrating potential for a more climate-resilient design.
 
|-
 
|-
Line 175: Line 175:  
|-
 
|-
 
|Maintenance
 
|Maintenance
|* A study in Toronto noted that vegetated LIDs may need more irrigation to avoid wilting, since the water availability in the root zone might decrease from historical levels (Guram & Bashir, 2024) <ref nmae=Guram>Guram, S., & Bashir, R. (2024). Designing effective low-impact developments for a changing climate: A HYDRUS-based vadose zone modeling approach. Water, 16(13), 1803. https://doi.org/10.3390/w16131803</ref>.
+
|* A study in Toronto noted that vegetated LIDs may need more irrigation to avoid wilting, since the water availability in the root zone might decrease from historical levels (Guram & Bashir, 2024) <ref name=Guram>Guram, S., & Bashir, R. (2024). Designing effective low-impact developments for a changing climate: A HYDRUS-based vadose zone modeling approach. Water, 16(13), 1803. https://doi.org/10.3390/w16131803</ref>.
 
|}
 
|}
  

Navigation menu