Difference between revisions of "OPSS aggregates"
Jenny Hill (talk | contribs) m |
|||
(18 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <onlyinclude>Of the standard granular materials in the standard OPSS. | + | [[File:Aggregates Highway 7.jpg|thumb|The fines can clearly be seen on these piles of standard OPSS aggregates for road reconstruction]] |
− | {{Textbox|1= Where Granular O is substituted for clear stone in underground reservoir structures, the | + | <onlyinclude>Of the standard granular materials in the standard [https://www.roadauthority.com/Standards/?id=a28fdfaf-3bf8-4679-81ca-4e44b2263cf8 OPSS.PROV 1010] only '''Granular O''' is recommended as a substitute for [[reservoir aggregate| clear stone]] in LID construction. |
− | Examples of BMPs with underground reservoirs include [[Underdrains]], [[infiltration trenches]], [[permeable | + | {{Textbox|1= Where Granular O is substituted for clear stone in underground reservoir structures, the porosity used in design calculations shall be '''0.3''' unless laboratory testing proves otherwise.}} |
+ | Examples of BMPs with underground reservoirs include [[Underdrains]], [[infiltration trenches]], [[permeable pavements]], [[infiltration chambers]], [[exfiltration trenches]]. | ||
All other mixes must be avoided for free drainage or storage as they are permitted to contain a higher enough proportion of fines to reduce permeability below 50 mm/hr. | All other mixes must be avoided for free drainage or storage as they are permitted to contain a higher enough proportion of fines to reduce permeability below 50 mm/hr. | ||
Line 8: | Line 9: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+ Grain size analysis, percent passing<ref>OPSS. (2013). Material | + | |+ Grain size analysis, percent passing<ref>OPSS. (2013). Material Specification for Aggregates - Base, Subbase, Select Subgrade, and Backfill Material. Retrieved from https://www.toronto.ca/wp-content/uploads/2017/11/91ba-ecs-specs-roadspecs-TS_1010_Sep2017.pdf</ref> <ref>OPSS. (2020). Construction Specification for Open Grades Drainage Layer. OPSS.PROV 320. Retrieved from: https://www.toronto.ca/wp-content/uploads/2017/11/91ba-ecs-specs-roadspecs-TS_1010_Sep2017.pdf</ref> |
!rowspan = "2" align = center| Sieve size (mm) | !rowspan = "2" align = center| Sieve size (mm) | ||
!colspan = "2" align = center| A | !colspan = "2" align = center| A | ||
Line 16: | Line 17: | ||
!colspan = "2" align = center| M | !colspan = "2" align = center| M | ||
!colspan = "2" align = center| O | !colspan = "2" align = center| O | ||
− | !colspan = "2" align = center| SSM | + | !colspan = "2" align = center| (SSM)<br> |
+ | <small>Select Subgrade Materials</small> | ||
+ | !colspan = "2" align = center| (OGDL)<br> | ||
+ | <small>Open Graded Drainage Layer</small> | ||
|- | |- | ||
− | | High || Low || High || Low || High || Low || High || Low || High || Low || High || Low || High || Low | + | | High || Low || High || Low || High || Low || High || Low || High || Low || High || Low || High || Low|| High || Low |
|- | |- | ||
− | | 150 || || || 100 || 100 || || || 100 || 100 || || || || || 100 || 100 | + | | 150 || || || 100 || 100 || || || 100 || 100 || || || || || 100 || 100|| || |
|- | |- | ||
− | | 106 || || || || || 100 || 100 || || || || || || || || | + | | 106 || || || || || 100 || 100 || || || || || || || || || || |
|- | |- | ||
− | | 37.5 || || || || || || || || || || || 100 || 100 || || | + | | 37.5 || || || || || || || || || || || 100 || 100 || || || 100|| 100 |
|- | |- | ||
− | | 26.5 || 100 || 100 || 50 || 100 || 50 || 100 || 50 || 100 || || || 95 || 100 || 50 || 100 | + | | 26.5 || 100 || 100 || 50 || 100 || 50 || 100 || 50 || 100 || || || 95 || 100 || 50 || 100|| 100|| 95 |
|- | |- | ||
− | | 19 || 85 || 100 || || || || || || || 100 || 100 || 80 || 95 || || | + | | 19 || 85 || 100 || || || || || || || 100 || 100 || 80 || 95 || || || 100|| 90 |
|- | |- | ||
− | | 13.2 || 65 || 90 || || || || || || || 75 || 95 || 60 || 80 || || | + | | 13.2 || 65 || 90 || || || || || || || 75 || 95 || 60 || 80 || || || 86|| 40 |
|- | |- | ||
− | | 9.5 || 50 || 73 || || || || || 32 || 100 || 55 || 80 || 50 || 70 || || | + | | 9.5 || 50 || 73 || || || || || 32 || 100 || 55 || 80 || 50 || 70 || || || 55|| 20 |
|- | |- | ||
− | | 4.75 || 35 || 55 || 20 || 100 || 20 || 55 || 20 || 90 || 35 || 55 || 20 || 45 || 20 || 100 | + | | 4.75 || 35 || 55 || 20 || 100 || 20 || 55 || 20 || 90 || 35 || 55 || 20 || 45 || 20 || 100 || 10|| 0 |
|- | |- | ||
− | | 1.18 || 15 || 40 || 10 || 100 || 10 || 40 || 10 || 60 || 15 || 40 || 0 || 15 || 10 || 100 | + | | 1.18 || 15 || 40 || 10 || 100 || 10 || 40 || 10 || 60 || 15 || 40 || 0 || 15 || 10 || 100|| || |
|- | |- | ||
− | | 0.3 || 5 || 22 || 2 || 65 || 5 || 22 || 2 || 35 || 5 || 22 || || || 5 || 95 | + | | 0.3 || 5 || 22 || 2 || 65 || 5 || 22 || 2 || 35 || 5 || 22 || || || 5 || 95|| || |
|- | |- | ||
− | | 0.15 || || 15 || || || || || || || || || || || 2 || 65 | + | | 0.15 || || 15 || || || || || || || || || || || 2 || 65|| || |
|- | |- | ||
− | | 0.075 || 2 || 8 || 0 || 8 || 0 || 10 || 0 || 8 || 2 || 8 || 0 || 5 || 0 ||style='color: red'|25 | + | | 0.075 || 2 || 8 || 0 || 8 || 0 || 10 || 0 || 8 || 2 || 8 || 0 || 5 || 0 ||style='color: red'|25|| 2|| 0 |
|- | |- | ||
− | | d<sub>60</sub> || 13 || 6 || 35 || 0.25 || 25 || 6 || 40 || 1.2 || 10 || 5 || 15 || 7 || 35 || 0.15 | + | | d<sub>60</sub> || 13 || 6 || 35 || 0.25 || 25 || 6 || 40 || 1.2 || 10 || 5 || 15 || 7 || 35 || 0.15 || 2 || style='color: red'|NaN |
|- | |- | ||
− | | d<sub>10</sub> || 0.7 || 0.1 || 1 || 0.08 || 1.2 || 0.075 || 1.2 || 0.085 || 0.6 || 0.09 || 2.5 || 0.3 || 1.2 ||style='color: red'|NaN | + | | d<sub>10</sub> || 0.7 || 0.1 || 1 || 0.08 || 1.2 || 0.075 || 1.2 || 0.085 || 0.6 || 0.09 || 2.5 || 0.3 || 1.2 ||style='color: red'|NaN || 0.658|| 0.466 |
|- | |- | ||
− | | Content Uniformity || 19 || 60 || 35 || 3 || 21 || 80 || 33 || 14 || 17 || 56 || 6 || 23 || 29 || | + | | Content Uniformity || 19 || 60 || 35 || 3 || 21 || 80 || 33 || 14 || 17 || 56 || 6 || 23 || 29 || || 3||style='color: red'|NaN |
|- | |- | ||
− | | | + | | Porosity (Vukovic) || 0.26 || 0.26 || 0.40 || 0.26 || 0.26 || 0.26 || 0.27 || 0.26 || 0.27 || 0.26 || 0.34 || 0.26 || 0.26 || || 0.40 || 0.25 |
|- | |- | ||
− | ! Mean | + | ! Mean porosity (Vukovic) |
!colspan = "2" align = center| 0.26 | !colspan = "2" align = center| 0.26 | ||
!colspan = "2" align = center| 0.33 | !colspan = "2" align = center| 0.33 | ||
Line 60: | Line 64: | ||
!colspan = "2" align = center| 0.3 | !colspan = "2" align = center| 0.3 | ||
!colspan = "2" align = center| 0.26 | !colspan = "2" align = center| 0.26 | ||
+ | !colspan = "2" align = center| 0.38 | ||
|- | |- | ||
− | | K<sub>(Hazen)</sub>(mm/hr) || 1764 ||style='color: red'|36 || 3600 ||style='color: red'|23 || 5184 ||style='color: red'|20 || 5184 ||style='color: red'|26|| 1296 ||style='color: red'|29|| 22500 || 324 || 5184 ||style='color: red'|NaN | + | | K<sub>(Hazen)</sub>(mm/hr) || 1764 ||style='color: red'|36 || 3600 ||style='color: red'|23 || 5184 ||style='color: red'|20 || 5184 ||style='color: red'|26|| 1296 ||style='color: red'|29|| 22500 || 324 || 5184 ||style='color: red'|NaN ||62500 || |
|- | |- | ||
! Mean K<sub>(hazen)</sub>(mm/hr) | ! Mean K<sub>(hazen)</sub>(mm/hr) | ||
Line 71: | Line 76: | ||
!colspan = "2" align = center| 11412 | !colspan = "2" align = center| 11412 | ||
!colspan = "2" align = center style='color: red'|NaN | !colspan = "2" align = center style='color: red'|NaN | ||
+ | !colspan = "2" align = center| 62500 | ||
|} | |} | ||
− | + | Porosity values were calculated based on the coefficient of uniformity (''C<sub>U</sub>'')<ref>Vuković, Milan and Soro, Andjelko Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colo, 1992.</ref><ref>Odong, J. (2007). Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. Journal of American Science, 3(3). Retrieved from http://www.jofamericanscience.org/journals/am-sci/0303/10-0284-Odong-Evaluation-am.pdf</ref><ref>Zhang, S. (2017). Relationship between Particle Size Distribution and Porosity in Dump Leaching. the University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0357233</ref>: | |
− | <math> | + | <math>n=0.255\left ( 1+0.83^{C_{U}} \right )</math> |
Where coefficient of uniformity is the ratio of the 60th and 10th percentile grain sizes: | Where coefficient of uniformity is the ratio of the 60th and 10th percentile grain sizes: | ||
<math>C_U=\frac{d_{60}}{d_{10}}</math> | <math>C_U=\frac{d_{60}}{d_{10}}</math> | ||
Permeability (''K'') was estimated from the 10th percentile grain size using the [[Hazen]] formula. | Permeability (''K'') was estimated from the 10th percentile grain size using the [[Hazen]] formula. | ||
− | + | ||
+ | ==References== | ||
+ | |||
[[Category: Materials]] | [[Category: Materials]] |
Latest revision as of 16:16, 1 December 2023
Of the standard granular materials in the standard OPSS.PROV 1010 only Granular O is recommended as a substitute for clear stone in LID construction.
Where Granular O is substituted for clear stone in underground reservoir structures, the porosity used in design calculations shall be 0.3 unless laboratory testing proves otherwise.
Examples of BMPs with underground reservoirs include Underdrains, infiltration trenches, permeable pavements, infiltration chambers, exfiltration trenches.
All other mixes must be avoided for free drainage or storage as they are permitted to contain a higher enough proportion of fines to reduce permeability below 50 mm/hr.
Justification[edit]
Sieve size (mm) | A | B type I | B type II | B type III | M | O | (SSM) Select Subgrade Materials |
(OGDL) Open Graded Drainage Layer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High | Low | High | Low | High | Low | High | Low | High | Low | High | Low | High | Low | High | Low | |
150 | 100 | 100 | 100 | 100 | 100 | 100 | ||||||||||
106 | 100 | 100 | ||||||||||||||
37.5 | 100 | 100 | 100 | 100 | ||||||||||||
26.5 | 100 | 100 | 50 | 100 | 50 | 100 | 50 | 100 | 95 | 100 | 50 | 100 | 100 | 95 | ||
19 | 85 | 100 | 100 | 100 | 80 | 95 | 100 | 90 | ||||||||
13.2 | 65 | 90 | 75 | 95 | 60 | 80 | 86 | 40 | ||||||||
9.5 | 50 | 73 | 32 | 100 | 55 | 80 | 50 | 70 | 55 | 20 | ||||||
4.75 | 35 | 55 | 20 | 100 | 20 | 55 | 20 | 90 | 35 | 55 | 20 | 45 | 20 | 100 | 10 | 0 |
1.18 | 15 | 40 | 10 | 100 | 10 | 40 | 10 | 60 | 15 | 40 | 0 | 15 | 10 | 100 | ||
0.3 | 5 | 22 | 2 | 65 | 5 | 22 | 2 | 35 | 5 | 22 | 5 | 95 | ||||
0.15 | 15 | 2 | 65 | |||||||||||||
0.075 | 2 | 8 | 0 | 8 | 0 | 10 | 0 | 8 | 2 | 8 | 0 | 5 | 0 | 25 | 2 | 0 |
d60 | 13 | 6 | 35 | 0.25 | 25 | 6 | 40 | 1.2 | 10 | 5 | 15 | 7 | 35 | 0.15 | 2 | NaN |
d10 | 0.7 | 0.1 | 1 | 0.08 | 1.2 | 0.075 | 1.2 | 0.085 | 0.6 | 0.09 | 2.5 | 0.3 | 1.2 | NaN | 0.658 | 0.466 |
Content Uniformity | 19 | 60 | 35 | 3 | 21 | 80 | 33 | 14 | 17 | 56 | 6 | 23 | 29 | 3 | NaN | |
Porosity (Vukovic) | 0.26 | 0.26 | 0.40 | 0.26 | 0.26 | 0.26 | 0.27 | 0.26 | 0.27 | 0.26 | 0.34 | 0.26 | 0.26 | 0.40 | 0.25 | |
Mean porosity (Vukovic) | 0.26 | 0.33 | 0.26 | 0.26 | 0.26 | 0.3 | 0.26 | 0.38 | ||||||||
K(Hazen)(mm/hr) | 1764 | 36 | 3600 | 23 | 5184 | 20 | 5184 | 26 | 1296 | 29 | 22500 | 324 | 5184 | NaN | 62500 | |
Mean K(hazen)(mm/hr) | 900 | 1812 | 2602 | 2605 | 663 | 11412 | NaN | 62500 |
Porosity values were calculated based on the coefficient of uniformity (CU)[3][4][5]: Where coefficient of uniformity is the ratio of the 60th and 10th percentile grain sizes:
Permeability (K) was estimated from the 10th percentile grain size using the Hazen formula.
References[edit]
- ↑ OPSS. (2013). Material Specification for Aggregates - Base, Subbase, Select Subgrade, and Backfill Material. Retrieved from https://www.toronto.ca/wp-content/uploads/2017/11/91ba-ecs-specs-roadspecs-TS_1010_Sep2017.pdf
- ↑ OPSS. (2020). Construction Specification for Open Grades Drainage Layer. OPSS.PROV 320. Retrieved from: https://www.toronto.ca/wp-content/uploads/2017/11/91ba-ecs-specs-roadspecs-TS_1010_Sep2017.pdf
- ↑ Vuković, Milan and Soro, Andjelko Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colo, 1992.
- ↑ Odong, J. (2007). Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. Journal of American Science, 3(3). Retrieved from http://www.jofamericanscience.org/journals/am-sci/0303/10-0284-Odong-Evaluation-am.pdf
- ↑ Zhang, S. (2017). Relationship between Particle Size Distribution and Porosity in Dump Leaching. the University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0357233