Line 1:
Line 1:
+
These sizing equations are suggested for use in calculating the capacity of swales which have a larger proportion of surface flow. i.e. grass swales, rather than [[bioswales]]. <br>
+
In many cases the length of swale required will exceed the available space, so that an underground [[infiltration trenches|infiltration trench]] or a [[Dry ponds| dry pond]] will be a preferred solution.
===Triangular channel===
===Triangular channel===
Sizing a triangular channel for complete volume retention:
Sizing a triangular channel for complete volume retention:
−
<math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}f}</math>
+
<math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}q}</math>
===Trapezoidal channel===
===Trapezoidal channel===
−
:<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}f}</math>
+
Sizing a trapezoidal channel for complete volume retention:
+
<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}q}</math>
−
[[category:modeling]]
+
{{Plainlist|1=Where:
+
*''L'' = length of swale in m
+
*''Q<sub>p</sub>'' = peak flow of the storm to be controlled, in m<sup>3</sup>/s
+
*''m'' = swale side slope (m/m)
+
*''S'' = the longitudinal slope (m/m)
+
*''n'' = Manning's coefficient (dimensionless)
+
*''b'' = bottom width of trapezoidal swale, in m.
+
* ''q'' = flow per unit width (m<sup>2</sup>/s)}}
+
+
+
+
----
+
[[Category:Infiltration]]
+
[[Category:Green infrastructure]]
+
[[Category:Modeling]]