Line 1: |
Line 1: |
| + | These sizing equations are suggested for use in calculating the capacity of swales which have a larger proportion of surface flow. i.e. grass swales, rather than [[bioswales]]. <br> |
| + | In many cases the length of swale required will exceed the available space, so that an underground [[infiltration trenches|infiltration trench]] or a [[Dry ponds| dry pond]] will be a preferred solution. |
| | | |
| ===Triangular channel=== | | ===Triangular channel=== |
| Sizing a triangular channel for complete volume retention: | | Sizing a triangular channel for complete volume retention: |
| | | |
− | <math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}f}</math> | + | <math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}q}</math> |
| | | |
| ===Trapezoidal channel=== | | ===Trapezoidal channel=== |
− | :<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}f}</math> | + | Sizing a trapezoidal channel for complete volume retention: |
| + | <math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}q}</math> |
| | | |
− | [[category:modeling]] | + | {{Plainlist|1=Where: |
| + | *''L'' = length of swale in m |
| + | *''Q<sub>p</sub>'' = peak flow of the storm to be controlled, in m<sup>3</sup>/s |
| + | *''m'' = swale side slope (m/m) |
| + | *''S'' = the longitudinal slope (m/m) |
| + | *''n'' = Manning's coefficient (dimensionless) |
| + | *''b'' = bottom width of trapezoidal swale, in m. |
| + | * ''q'' = flow per unit width (m<sup>2</sup>/s)}} |
| + | |
| + | |
| + | |
| + | ---- |
| + | [[Category:Infiltration]] |
| + | [[Category:Green infrastructure]] |
| + | [[Category:Modeling]] |