Changes

Jump to navigation Jump to search
Line 1: Line 1: −
[[File:KoppenGeigerclimatezonesCanada_2017.jpg|thumb|Koppen-Geiger Climate Zones of Canada, 2017]]
+
[[File:KoppenGeigerclimatezonesCanada_2017.jpg|thumb|500px|Koppen-Geiger Climate Zones of Canada, 2017]]
 
{{TOClimit|2}}
 
{{TOClimit|2}}
 
==Cold climates==
 
==Cold climates==
Most major cities and urban areas in Ontario have a "humid continental" climate featuring snow and warm summers, classified as "Dfb" according to the [https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification Koppen-Geiger climate zone classification system], which includes average temperatures in the coldest month well below -3°C. Other locations in Canada with a humid continental "Dfb" climate include portions of the British Columbia interior (Kamloops, Kelowna, Prince George), the prairies (Calgary, Edmonton, Regina, Saskatoon and Winnipeg), southern Quebec (Montreal, Quebec City), and Atlantic Canada (Charlottetown, Fredericton, Halifax, St. John's). Locations in the United States with a "Dfb" climate include portions of Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New York, North Dakota, Pennsylvania, Vermont and Wisconsin. Other locations around the world with a "Dfb" climate includes such cities as Oslo (Norway), Helsinki (Finland), Stockholm (Sweden), Moscow (Russia), Kiev (Ukraine) and Hokkaido and Sapporo (Japan). <br>  
+
Most major cities and urban areas in Ontario have a "humid continental" climate featuring snow and warm summers, classified as "Dfb" according to the [https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification Koppen-Geiger climate zone classification system], which includes average temperatures in the coldest month well below -3°C. Other locations in Canada with a humid continental "Dfb" climate include portions of the British Columbia interior (Kamloops, Kelowna, Prince George), the prairies (Calgary, Edmonton, Regina, Saskatoon and Winnipeg), southern Quebec (Montreal, Quebec City), and Atlantic provinces (Charlottetown, Fredericton, Halifax, St. John's). Locations in the United States with a "Dfb" climate include portions of Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New York, North Dakota, Pennsylvania, Vermont and Wisconsin. Other locations around the world with a "Dfb" climate includes such cities as Oslo (Norway), Helsinki (Finland), Stockholm (Sweden), Moscow (Russia), Kiev (Ukraine) and Hokkaido and Sapporo (Japan). <br>  
 
<br>
 
<br>
 
The southernmost portion of Ontario has a humid continental climate that features snow and hot summers, with a Koppen-Geiger climate zone classification of "Dfa". Other locations with "Dfa" climate include northern portions of Illinois, Indiana, Iowa and Ohio in the United States.
 
The southernmost portion of Ontario has a humid continental climate that features snow and hot summers, with a Koppen-Geiger climate zone classification of "Dfa". Other locations with "Dfa" climate include northern portions of Illinois, Indiana, Iowa and Ohio in the United States.
   −
==De-icing salt==
+
==De-icing [[salt]]==
See also: [[Salt management]]
   
[[File:Snow_filter_strip.png|thumb|Snow being stored on a filter strip in Markham, ON]]
 
[[File:Snow_filter_strip.png|thumb|Snow being stored on a filter strip in Markham, ON]]
Sodium and chloride ions in de-icing salts applied to asphalt areas travel easily with the runoff water. De-icing salt can increase the mobility of some [[heavy metals]] in soil (e.g. lead, copper or cadmium). This may increase the downstream concentration of these metals <ref>Amrhein, C., Strong, J.E., and Mosher, P.A. 1992. Effect of de-icing salts on metal and organic matter mobilization in roadside soils. Environmental Science and Technology. Vol. 26, No. 4, pp. 703-709</ref><ref>Bauske, B., Goetz, D. 1993. Effects of de-icing salts on heavy metal mobility. Acta Hydrochimica Hydrobiologica. Vol. 21. pp. 38-42., 1993).</ref>
+
Sodium and chloride ions in de-icing [[salt|salts]] applied to asphalt areas travel easily with the runoff water. De-icing [[salt]] can increase the mobility of some [[heavy metals]] in soil (e.g. lead, copper or cadmium). This may increase the downstream concentration of these metals <ref>Amrhein, C., Strong, J.E., and Mosher, P.A. 1992. Effect of de-icing salts on metal and organic matter mobilization in roadside soils. Environmental Science and Technology. Vol. 26, No. 4, pp. 703-709</ref><ref>Bauske, B., Goetz, D. 1993. Effects of de-icing salts on heavy metal mobility. Acta Hydrochimica Hydrobiologica. Vol. 21. pp. 38-42., 1993).</ref>
    
Very few studies have sampled groundwater below infiltration facilities or roadside ditches receiving de-icing salt laden runoff have found concentrations of heavy metals that exceed drinking water standards <ref>Howard, K.W.F. and Beck, P.J. 1993. Hydrogeochemical implications of groundwater contamination by road de-icing chemicals. Journal of Contaminant Hydrology. Vol. 12. pp. 245-268.</ref><ref>Granato, G.E., Church, P.E., Stone, V.J. 1995. Mobilization of Major and Trace Constituents of Highway Runoff in Groundwater Potentially Caused by De-icing Chemical Migration. Transportation Research Record. No. 1483.</ref>
 
Very few studies have sampled groundwater below infiltration facilities or roadside ditches receiving de-icing salt laden runoff have found concentrations of heavy metals that exceed drinking water standards <ref>Howard, K.W.F. and Beck, P.J. 1993. Hydrogeochemical implications of groundwater contamination by road de-icing chemicals. Journal of Contaminant Hydrology. Vol. 12. pp. 245-268.</ref><ref>Granato, G.E., Church, P.E., Stone, V.J. 1995. Mobilization of Major and Trace Constituents of Highway Runoff in Groundwater Potentially Caused by De-icing Chemical Migration. Transportation Research Record. No. 1483.</ref>
Line 19: Line 18:  
*Prioritize infiltration of runoff from source areas that are comparatively less contaminated such as roofs, low traffic roads and parking areas; and
 
*Prioritize infiltration of runoff from source areas that are comparatively less contaminated such as roofs, low traffic roads and parking areas; and
 
*Apply [[pretreatment]] practices before infiltration of road or parking area runoff.
 
*Apply [[pretreatment]] practices before infiltration of road or parking area runoff.
 +
*Implement winter de-icing [[Salt management |salt management best practices]].
   −
==Cold climate design considerations==
+
==Cold climate considerations==
 
[[File:Ice storm (1).jpg|thumb|Ice storm (1)]]
 
[[File:Ice storm (1).jpg|thumb|Ice storm (1)]]
 
===[[Underdrain |Underdrains]] and flow control devices===
 
===[[Underdrain |Underdrains]] and flow control devices===
 
[[Underdrain]] perforated pipes should be located below the frost line to reduce the threat of ice clogging. Ontario provincial standard drawings of frost penetration depth are available from the [https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/opsViews.aspx Ministry of Transportation] as OPSD 3090.100 for northern Ontario <ref> Ministry of Transportation. 2010. Foundation Frost Penetration Depths for Northern Ontario. OPSD 3090.100. Nov 2010. Rev.1. https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/opsViews.aspx </ref> and OPSD 3090.101 for southern Ontario <ref> Ministry of Transportation. 2010. Foundation Frost Penetration Depths for Southern Ontario. OPSD 3090.101. Nov 2010. Rev.1. https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/opsViews.aspx </ref>.<br>
 
[[Underdrain]] perforated pipes should be located below the frost line to reduce the threat of ice clogging. Ontario provincial standard drawings of frost penetration depth are available from the [https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/opsViews.aspx Ministry of Transportation] as OPSD 3090.100 for northern Ontario <ref> Ministry of Transportation. 2010. Foundation Frost Penetration Depths for Northern Ontario. OPSD 3090.100. Nov 2010. Rev.1. https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/opsViews.aspx </ref> and OPSD 3090.101 for southern Ontario <ref> Ministry of Transportation. 2010. Foundation Frost Penetration Depths for Southern Ontario. OPSD 3090.101. Nov 2010. Rev.1. https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/opsViews.aspx </ref>.<br>
 
<br>  
 
<br>  
[[Weirs]] are generally less prone to clogging from ice than [[orifices]] under all flow conditions, proprietary low flow devices are also available which are designed to mitigate clogging from ice or other solid debris.
+
[[Weirs]] are generally less prone to clogging from ice than [[orifices]] or valves under all flow conditions. Proprietary low flow devices are also available which are designed to mitigate clogging from ice or other solid debris.
 +
 
 
===Plowing===
 
===Plowing===
 
Rubber plow blades are increasingly available and required in many jurisdictions. Their use reduces damage to all kinds of pavement surfaces and they are particularly recommended for application where LID facilities exist, such as permeable pavements and curb cut inlets of bioretention, bioswales, swales and stormwater tree trenches.
 
Rubber plow blades are increasingly available and required in many jurisdictions. Their use reduces damage to all kinds of pavement surfaces and they are particularly recommended for application where LID facilities exist, such as permeable pavements and curb cut inlets of bioretention, bioswales, swales and stormwater tree trenches.
Line 34: Line 35:  
===[[Green Roofs |Green roofs]]===  
 
===[[Green Roofs |Green roofs]]===  
 
The survival of [[Green roofs: Planting|green roof plantings]] is greater in winters with long deep sub-zero temperatures. Being shallow and very exposed to warming sunlight, green roofs thaw rapidly. Frequent freeze-thaw cycles in the early and late winter are associated higher loss of vegetation on green roofs.
 
The survival of [[Green roofs: Planting|green roof plantings]] is greater in winters with long deep sub-zero temperatures. Being shallow and very exposed to warming sunlight, green roofs thaw rapidly. Frequent freeze-thaw cycles in the early and late winter are associated higher loss of vegetation on green roofs.
----
+
 
 +
==References==

Navigation menu