Changes

Jump to navigation Jump to search
165 bytes added ,  1 year ago
Line 81: Line 81:     
==Salt Reduction Best Practices==
 
==Salt Reduction Best Practices==
 +
 +
[[File:Bypass bioretention.png|thumb|250px|Example of a bypass in use to limit runoff from entering into a [[bioretention]] cell BMP. (Photo Source: TRCA, 2021)]]
 +
 
Since salt is not removed by traditional best practices, reducing application rates to only what is needed to achieve pavement safety requirements is the best means of managing impacts of salt on the environment and infrastructure. Pavement friction testing has shown that salting beyond the required amount does not translate into improved safety: [https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf LSRCA's Technical Bulletin: Alternatives to Salt].<ref name="example9">LSRCA. 2020. Friction and Parking Lots. Technical Bulletin, Volume 3 September 2020. https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf</ref>
 
Since salt is not removed by traditional best practices, reducing application rates to only what is needed to achieve pavement safety requirements is the best means of managing impacts of salt on the environment and infrastructure. Pavement friction testing has shown that salting beyond the required amount does not translate into improved safety: [https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf LSRCA's Technical Bulletin: Alternatives to Salt].<ref name="example9">LSRCA. 2020. Friction and Parking Lots. Technical Bulletin, Volume 3 September 2020. https://sustainabletechnologies.ca/app/uploads/2021/05/Friction-and-Parking-Lots.pdf</ref>
  

Navigation menu