Changes

Jump to navigation Jump to search
Line 19: Line 19:  
The key method for nutrient management is source control, or prevention of pollutants from entering stormwater, at the source. Low Impact Development (LID) features are source control measures in this way. Source control policies are cost effective tools for nutrient management (Marsalek and Viklander, 2011<ref>Marsalek, J., Viklander, M., 2011. Controlling contaminants in urban stormwater: Linking environmental science and policy. In: Lundqvist, J. (Ed.), On the Water Front: Selections from the 2010 World Water Week in Stockholm. vol. 101. Stockholm International Water Institute (SIWI), Stockholm.</ref>) that support and encourage the implementation of LIDs. Examples of such policies are adapted by Lake Simcoe Region Conservation Authority, South Nation Conservation (SNC), Nottawasaga Valley Conservation Authority (NVCA), and Halton Region in Ontario, as well as Chesapeake Bay and Mississippi River Basin (Region of Waterloo, 2017<ref>Region of Waterloo. (2017). Phosphorus Offsetting: Review of Existing Ontario Programs and Opportunities. Available at: https://www.regionofwaterloo.ca/en/living-here/resources/Documents/water/projects/wastewater/plan/WS2018V5-Tech_Memo_9A_WWTMP-Phosphorus_Offsetting_2017.PDF</ref>), municipalities as nutrient management by-laws, provinces like Ontario Nutrient Management Act and the Great Lakes Protection Act, and countries like Great Lakes Agreement between Canada and the US (CWN, 2017<ref name="example1" />). Additionally, design guidelines such as this one, provide tools for design and implementation of LIDs. While historically these guidelines indicated percent removal rates, the recent approaches are guiding to meet specific numeric objectives such as concentration (Clark and Pitt, 2012<ref>Clark, S. E., and Pitt, R. (2012). Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits. Water Res., 46(20), 6715–6730.</ref>).
 
The key method for nutrient management is source control, or prevention of pollutants from entering stormwater, at the source. Low Impact Development (LID) features are source control measures in this way. Source control policies are cost effective tools for nutrient management (Marsalek and Viklander, 2011<ref>Marsalek, J., Viklander, M., 2011. Controlling contaminants in urban stormwater: Linking environmental science and policy. In: Lundqvist, J. (Ed.), On the Water Front: Selections from the 2010 World Water Week in Stockholm. vol. 101. Stockholm International Water Institute (SIWI), Stockholm.</ref>) that support and encourage the implementation of LIDs. Examples of such policies are adapted by Lake Simcoe Region Conservation Authority, South Nation Conservation (SNC), Nottawasaga Valley Conservation Authority (NVCA), and Halton Region in Ontario, as well as Chesapeake Bay and Mississippi River Basin (Region of Waterloo, 2017<ref>Region of Waterloo. (2017). Phosphorus Offsetting: Review of Existing Ontario Programs and Opportunities. Available at: https://www.regionofwaterloo.ca/en/living-here/resources/Documents/water/projects/wastewater/plan/WS2018V5-Tech_Memo_9A_WWTMP-Phosphorus_Offsetting_2017.PDF</ref>), municipalities as nutrient management by-laws, provinces like Ontario Nutrient Management Act and the Great Lakes Protection Act, and countries like Great Lakes Agreement between Canada and the US (CWN, 2017<ref name="example1" />). Additionally, design guidelines such as this one, provide tools for design and implementation of LIDs. While historically these guidelines indicated percent removal rates, the recent approaches are guiding to meet specific numeric objectives such as concentration (Clark and Pitt, 2012<ref>Clark, S. E., and Pitt, R. (2012). Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits. Water Res., 46(20), 6715–6730.</ref>).
   −
Selection of the LID type and its implementation for proper nutrient management, requires a good understanding of site limitations, sources of nutrients, their forms (particulate/soluble), and nutrient removal mechanisms associated with each LID type. The sources of nutrients and removal mechanisms are reviewed in this page, for additional details on [[phosphorus]] and [[nitrogen]], refer to their relative pages.
+
Selection of the LID type and its implementation for proper nutrient management, requires a good understanding of site limitations, sources of nutrients, their forms (particulate/soluble), and nutrient removal mechanisms associated with each LID type. The sources of nutrients and removal mechanisms are reviewed in this page [[Phosphorus]] page for additional details.
    
==Nutrient sources==
 
==Nutrient sources==

Navigation menu