Changes

Jump to navigation Jump to search
Line 1: Line 1: −
[[File:Perme pavement banner.JPG|thumb|750px|link=https://sustainabletechnologies.ca/app/uploads/2018/02/Permeable-Pavement-Fact-Sheet.pdf|Inspection & Maintenance Guidance of a built vstormwater best management practices that treats the stormwater that falls on them and can be designed to also receive runoff from adjacent impermeable surfaces (e.g., pavements and roofs) as either sheet flow or from a pipe (e.g., roof downspout) connected to
+
[[File:Perme pavement banner.JPG|thumb|750px|link=https://sustainabletechnologies.ca/app/uploads/2018/02/Permeable-Pavement-Fact-Sheet.pdf|Inspection & Maintenance Guidance of a built stormwater best management practices that treats the stormwater that falls on them and can be designed to also receive runoff from adjacent impermeable surfaces (e.g., pavements and roofs) as either sheet flow or from a pipe (e.g., roof downspout) connected to
 
the washed gravel base, where captured water is temporarily stored in the base where it later soaks into underlying native soil or sent to a municipal stormsewer/other BMP via [[underdrains]] (TRCA, 2016)<ref> TRCA. 2016. Fact Sheet - Inspection and Maintenance of Stormwater Best Management Practices: Permeable Pavement. https://sustainabletechnologies.ca/app/uploads/2018/02/Permeable-Pavement-Fact-Sheet.pdf</ref>]]
 
the washed gravel base, where captured water is temporarily stored in the base where it later soaks into underlying native soil or sent to a municipal stormsewer/other BMP via [[underdrains]] (TRCA, 2016)<ref> TRCA. 2016. Fact Sheet - Inspection and Maintenance of Stormwater Best Management Practices: Permeable Pavement. https://sustainabletechnologies.ca/app/uploads/2018/02/Permeable-Pavement-Fact-Sheet.pdf</ref>]]
    
{{TOClimit|2}}
 
{{TOClimit|2}}
 
==Overview==
 
==Overview==
[[Permeable pavements|Permeable Pavement]] Permeable pavements contain many small openings (i.e., joints or pores) that allow rainfall and snowmelt (i.e., stormwater) to drain through them instead of running off the surface as it does on impervious pavements like conventional asphalt and concrete. An overflow outlet is needed to safely convey flows during flood events. Depending on the permeability of the underlying soil and other constraints, the pavement may be designed with no sub-drain for full infiltration, with a sub-drain for partial infiltration, or with an impermeable liner and sub-drain for a no infiltration practice. The sub-drain pipe may feature a flow restrictor (e.g., orifice cap or valve) for gradually releasing detained water and optimizing the amount drained by [[infiltration]] into the underlying soil.
+
[[Permeable pavements|Permeable Pavement]] contain many small openings (i.e., joints or pores) that allow rainfall and snowmelt (i.e., stormwater) to drain through them instead of running off the surface as it does on impervious pavements like conventional asphalt and concrete. An overflow outlet is needed to safely convey flows during flood events. Depending on the permeability of the underlying soil and other constraints, the pavement may be designed with no sub-drain for full infiltration, with a sub-drain for partial infiltration, or with an impermeable liner and sub-drain for a no infiltration practice. The sub-drain pipe may feature a flow restrictor (e.g., orifice cap or valve) for gradually releasing detained water and optimizing the amount drained by [[infiltration]] into the underlying soil.
 
</br>
 
</br>
 
[[File:P.p plan and profile view.PNG|thumb|400px|General plan and profile (cross-section) views showcasing key components and sections of a Permeable Interlocking Concerte Pavement (PICP).]]
 
[[File:P.p plan and profile view.PNG|thumb|400px|General plan and profile (cross-section) views showcasing key components and sections of a Permeable Interlocking Concerte Pavement (PICP).]]
Line 180: Line 180:  
# After every large storm event (e.g., 15 mm rainfall depth or greater) to ensure flow diversion devices are functioning and adequately maintained. View the table below, which describes critical points during the construction sequence when inspections should be performed prior to proceeding further. You can also download and print the table [https://wikidev.sustainabletechnologies.ca/images/9/9f/LID-IM-Guide-7.4-Permeable-Pavements.pdf '''here''']<br>
 
# After every large storm event (e.g., 15 mm rainfall depth or greater) to ensure flow diversion devices are functioning and adequately maintained. View the table below, which describes critical points during the construction sequence when inspections should be performed prior to proceeding further. You can also download and print the table [https://wikidev.sustainabletechnologies.ca/images/9/9f/LID-IM-Guide-7.4-Permeable-Pavements.pdf '''here''']<br>
 
</br>
 
</br>
[[File:MaintenancePICP.png|thumb|400px|A Vacuum Truck used for [[permeable pavement]] maintenance, which sucks up excess sediment and fines trapped between the pores of block pavers. Conducting this maintenance regularly helps maintain the practice's optimal infiltration rate during large rain events.  (Source: STEP).]]  
+
[[File:MaintenancePICP.png|thumb|400px|A pure vacuum sweeper truck used for [[permeable pavement]] maintenance or rehabilitation, which sucks up excess sediment and fines trapped between the pores of block pavers. Conducting this maintenance regularly helps maintain the practice's optimal surface infiltration rate.  (Source: STEP).]]  
    
{| class="wikitable" style="width: 800px;"
 
{| class="wikitable" style="width: 800px;"
Line 291: Line 291:  
*Remove trash regularly (biannually-quarterly);
 
*Remove trash regularly (biannually-quarterly);
 
*Grid systems with soil and grass fill are maintained like lawns;
 
*Grid systems with soil and grass fill are maintained like lawns;
*Sweep and vacuum interlocking and rigid pavements regularly (annually-biannually) with regenerative air/pure vacuum sweeper;
+
*Sweep and vacuum the entire permeable pavement surface regularly (annually-biannually)<ref> Weiss, P.T., Kayhanian, M., Gulliver, J.S., Khanzanovich, L. 2019. Permeable pavement in northern North America urban areas: research review and knowledge gaps. International Journal of Pavement Engineering. Vol.20, No.2, 143-162. https://www.tandfonline.com/doi/full/10.1080/10298436.2017.1279482 </ref>  <ref> Al-Rubaei, A.M., Stenglein, A.L., Viklander, M., Blecken, G.T. 2013. Long-Term Hydraulic Performance of Porous Asphalt Pavements in Northern Sweden. Journal of Irrigation and Drainage Engineering. Vol.139 No.6: 499-505. https://ascelibrary.org/doi/10.1061/%28ASCE%29IR.1943-4774.0000569 </ref> <ref> Permeable Pavements Task Committee. 2015. Permeable Pavements. Edited by Eisenberg, B., Collins Lindow, K. and Smith, D.R., Amercian Society of Civil Engineers (ASCE), Reston VA. https://ascelibrary.org/doi/book/10.1061/9780784413784 </ref> with regenerative air or pure vacuum sweeper;
 
*Plow snow as needed and spread deicers sparingly during winter;
 
*Plow snow as needed and spread deicers sparingly during winter;
 
*Repair ruts or local sinking of 15 mm or greater over a 3 metre length, adjacent pavers or cracks in pervious concrete or porous asphalt are vertically offset by 5 mm or greater and paver joint fill is missing or below 15 mm from the paver surface.
 
*Repair ruts or local sinking of 15 mm or greater over a 3 metre length, adjacent pavers or cracks in pervious concrete or porous asphalt are vertically offset by 5 mm or greater and paver joint fill is missing or below 15 mm from the paver surface.
Line 352: Line 352:  
*Permeable pavements can be [[Winter|plowed]] for snow removal like conventional pavements. To reduce the risk of dislodging pavers or grids and minimize displacement of joint/cell fill material, the plow blade should be slightly raised off the pavement surface (e.g., 0.6 cm or 1/4”) with a shoe attachment.
 
*Permeable pavements can be [[Winter|plowed]] for snow removal like conventional pavements. To reduce the risk of dislodging pavers or grids and minimize displacement of joint/cell fill material, the plow blade should be slightly raised off the pavement surface (e.g., 0.6 cm or 1/4”) with a shoe attachment.
 
*Plowed snow piles should not be stored on permeable pavements to reduce the risk of [[clogging]] from sediment accumulation upon melting.
 
*Plowed snow piles should not be stored on permeable pavements to reduce the risk of [[clogging]] from sediment accumulation upon melting.
*Do not spread [[sand]] on permeable pavements as part of [[Winter|winter maintenance]] as it will quickly clog the joints or pores and impair drainage function. On permeable interlocking pavers and grid systems filled with gravel, if application of an anti-skid material is desirable, spread the same fine washed gravel material used to fill the paver joints or grid cells; and
+
*Do not spread [[sand]] on permeable pavements as part of [[Winter|winter maintenance]] as it will quickly clog the joints or pores and impair drainage function.<ref>Huang, J., Valeo, C., He, J., Chu, A. 2016. Three Types of Permeable Pavements in Cold Climates: Hydraulic and Environmental Performance. Journal of Environmental Engineering. 2016:04016025. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001085 </ref>  On permeable interlocking pavers and grid systems filled with gravel, if application of an anti-skid material is desirable, spread the same fine washed gravel material used to fill the paver joints or grid cells<ref> American Society of Civil Engineers (ASCE). 2018. ASCE/T&DI/ICPI Standard 68-18. Permeable Interlocking Concrete Pavements. Reston VA.https://sp360.asce.org/PersonifyEbusiness/Merchandise/Product-Details/productId/244074874 </ref>; and
*[[Salt|De-icers]] should be used sparingly, as needed during winter. Due to their freely draining design, ice will not form on permeable pavements as readily as it does on conventional impermeable pavements during winter thaw-freeze cycles.
+
*[[Salt|De-icers]] should be used sparingly, as needed during winter. Due to their freely draining design, ice will not form on permeable pavements as readily as it does on conventional impermeable pavements during winter thaw-freeze cycles and thereby require fewer salt applications during winter. In a study of a porous asphalt parking lot in New Hampshire, it was found that application of de-icing salt could be reduced by between 64 to 77% while still maintaining equivalent or better surface conditions compared to rates needed for impermeable asphalt.<ref> Roseen, R.A., Ballestro, T.P., Houle, K.M., Heath, D., Houle, J.J. 2014. Assessment of Winter Maintenance of Porous Asphalt and Its Function for Chloride Source Control. Journal of Transportation Engineering. 2014.140. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29TE.1943-5436.0000618 </ref> In a comparative study of subsurface temperature during freezing winter conditions, Danz et al. (2021) found that PICP surpassed PC and PA with fewer days below freezing, higher temperatures on melt days, slower freeze and faster thaw times, and less penetration of freezing temperatures at depth.<ref>Danz, M.E., Buer, N.H., Selbig, W.R. 2021. Water. 2021, 13, 3513. https://www.mdpi.com/2073-4441/13/24/3513 </ref>
    
==Rehabilitation & Repair==
 
==Rehabilitation & Repair==
Line 377: Line 377:  
*Replace or reset unit by hand and restore joint or grid cell fill material that meets design specification.
 
*Replace or reset unit by hand and restore joint or grid cell fill material that meets design specification.
 
|-
 
|-
|Surface [[infiltration]] rate is < 250 mm/h  
+
|Surface [[infiltration]] rate is < 250 mm/h <ref>American Society of Civil Engineers (ASCE). 2018. ASCE/T&DI/ICPI Standard 68-18. Permeable Interlocking Concrete Pavements. Reston VA. https://sp360.asce.org/PersonifyEbusiness/Merchandise/Product-Details/productId/244074874 </ref>
 
|
 
|
*Sweep and thoroughly vacuum with a pure vacuum sweeper to remove accumulated sediment. Replace [[OPSS aggregates|joint fill material]] removed through vacuuming. Pretreatment of the surface of slow draining pavements (e.g., water-assisted techniques, additional sweeping) prior to vacuuming may be warranted where surface [[clogging]] of joints or pores is visible. If surface drainage performance remains unacceptable, remove all pavers, [[Choker layer|bedding]] and joint fill and top 5 cm (2”) of base [[Reservoir aggregate|aggregate]] and replace with new materials that meet design specifications.
+
*Sweep and thoroughly vacuum with a pure vacuum sweeper to remove accumulated sediment. Replace [[OPSS aggregates|joint fill material]] removed through vacuuming. Pretreatment of the surface and joints or pores of slow draining pavements (e.g., mechanical sweeping and/or pressure washing techniques) prior to vacuuming may be warranted where surface [[clogging]] is visible. If surface drainage performance remains unacceptable, remove all pavers, [[Choker layer|bedding]] and joint fill and top 5 cm (2”) of base [[Reservoir aggregate|aggregate]] and replace with new materials that meet design specifications. A promising option for rehabilitating clogged porous asphalt identified through recent research by Winston et al. (2016) is milling and replacement of the top 2.5 cm of the surface course, which was found to successfully restore drainage function to a 21 year old installation in northern Sweden.<ref> Winston, R.J., Al-Rubaei, A.M., Blecken, G.T., Viklander, M., Hunt, W.F. 2016. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate - The effects of street sweeping, vacuum cleaning, high pressure washing and milling. Journal of Environmental Management. 169 (2016) 132-144. https://www.sciencedirect.com/science/article/pii/S0301479715304412?via%3Dihub </ref>
 
|-
 
|-
 
|'''[[Vegetation]]'''
 
|'''[[Vegetation]]'''

Navigation menu