Changes

Jump to navigation Jump to search
Line 70: Line 70:  
*Plastic chambers usually have a parabolic shape to support the load above. The spaces between rows of plastic pipes or chambers are filled with clear stone to support overlying structures.
 
*Plastic chambers usually have a parabolic shape to support the load above. The spaces between rows of plastic pipes or chambers are filled with clear stone to support overlying structures.
 
*Concrete vaults and plastic crates are often rectangular-shaped. Concrete vault systems can, in some circumstances, be employed without any additional cover. However, a minimum of 20 cm cover is recommended for most applications. Where this cover is planting soil this can support turf grass. Greater planting soil depths are required to support more deeply rooting plants like perennials and shrubs (45 to 60 cm) and trees (85 to 100 cm).
 
*Concrete vaults and plastic crates are often rectangular-shaped. Concrete vault systems can, in some circumstances, be employed without any additional cover. However, a minimum of 20 cm cover is recommended for most applications. Where this cover is planting soil this can support turf grass. Greater planting soil depths are required to support more deeply rooting plants like perennials and shrubs (45 to 60 cm) and trees (85 to 100 cm).
 +
 +
===Infiltration===
 +
For information about constraints to infiltration practices, and approaches and tools for identifying and designing within them see [[Infiltration]].
    
===Geometry and Site Layout===
 
===Geometry and Site Layout===
*[[Site considerations]]
   
Infiltration chambers and soakaways can be designed in a variety of shapes, although facilities should have level or nearly level bottoms to spread flow evenly throughout. Typically designed with an impervious drainage area to pervious facility footprint area ratio (i.e. I:P ratio) between 5:1 on low permeability soils (HSG C & D) to 20:1 on high permeability soils (HSG A & B). Not typically deeper than 4 m.
 
Infiltration chambers and soakaways can be designed in a variety of shapes, although facilities should have level or nearly level bottoms to spread flow evenly throughout. Typically designed with an impervious drainage area to pervious facility footprint area ratio (i.e. I:P ratio) between 5:1 on low permeability soils (HSG C & D) to 20:1 on high permeability soils (HSG A & B). Not typically deeper than 4 m.
    
===Native Soil===
 
===Native Soil===
Infiltration trenches, chambers and soakaways can be constructed over any soil type, but hydrologic soil group (HSG) A or B soils are best for achieving water balance and erosion control objectives. Facilities should be located on portions of the site with the highest infiltration rates. Native soil infiltration rate at the proposed facility location and depth should be confirmed through in-situ measurements of hydraulic conductivity under field saturated conditions.  
+
Infiltration trenches, chambers and soakaways can be constructed over any soil type, but hydrologic soil group (HSG) A or B soils are best for achieving water balance and erosion control objectives. Facilities should be located on portions of the site with the highest infiltration rates. Native soil infiltration rate at the proposed facility location and depth should be confirmed through in-situ measurements of hydraulic conductivity under field saturated conditions. For guidance on infiltration testing and selecting a design infiltration rate see [[Design infiltration rate]].
    
===Wellhead Protection===
 
===Wellhead Protection===
Line 88: Line 90:     
===Water Table===
 
===Water Table===
Maintaining a separation of one (1) metre between the elevations of the base of the practice and the seasonally high water table, or top of bedrock is recommended. Lesser or greater values may be considered based on groundwater mounding analysis. See STEP LID Planning and Design Guide wiki page, [[Groundwater]] for further guidance and spreadsheet tool.
+
Maintaining a separation of one (1) metre between the elevations of the base of the practice and the seasonally high water table, or top of bedrock is recommended. Lesser or greater values may be considered based on groundwater mounding analysis. See [[Groundwater]] for further guidance and spreadsheet tool.
    
===Pollution Hot Spot Runoff===
 
===Pollution Hot Spot Runoff===
Line 96: Line 98:  
Designers should consult local utility design guidance for the horizontal and vertical clearances required between storm drains.
 
Designers should consult local utility design guidance for the horizontal and vertical clearances required between storm drains.
   −
===Karst===
+
===[[Karst]]===
Infiltration trenches, chambers and soakaways are not suitable in areas of known or implied karst topography.  
+
Infiltration trenches, chambers and soakaways are not suitable in areas of known or implied karst topography.
    
===Setback from Buildings===
 
===Setback from Buildings===
 
Facilities should be setback a minimum of four (4) metres from building foundations.
 
Facilities should be setback a minimum of four (4) metres from building foundations.
    +
 +
For a table summarizing information on planning considerations and site constraints see [[Site considerations]].
      Line 151: Line 155:     
===Monitoring Wells===  
 
===Monitoring Wells===  
 +
*[[Wells]]
 
Recommended for monitoring drainage time between storms.  Monitoring well should be a vertical standpipe consisting of an anchored 100 to 150 mm diameter pipe with perforations along the length within the reservoir, installed to the bottom of the facility, with a lockable cap. Flow-splitting manholes may also be used for drainage time monitoring.
 
Recommended for monitoring drainage time between storms.  Monitoring well should be a vertical standpipe consisting of an anchored 100 to 150 mm diameter pipe with perforations along the length within the reservoir, installed to the bottom of the facility, with a lockable cap. Flow-splitting manholes may also be used for drainage time monitoring.
   Line 157: Line 162:       −
[[File:Infiltration Chamber Edited.jpg|800px|]]
+
[[File:Infiltration Chamber Edited.jpg|900px|]]
      Line 166: Line 171:  
The above image depicts various types of infiltration chamber systems that can be installed underneath a impermeable surface,  
 
The above image depicts various types of infiltration chamber systems that can be installed underneath a impermeable surface,  
 
such as a parking lot or commercial property site (see table in Overview Section above for further details on each of the  
 
such as a parking lot or commercial property site (see table in Overview Section above for further details on each of the  
configurations shown). Note the observation well (or monitoring well) shown which provides access for general I&M of the BMP.  
+
configurations shown). Note the observation well (or monitoring well) shown which provides access for general I&M of the BMP.
 
  −
 
      
===Ability to Meet Stormwater Criteria===
 
===Ability to Meet Stormwater Criteria===
Line 201: Line 204:     
===Erosion and Sediment Control===  
 
===Erosion and Sediment Control===  
Infiltration practice locations should not be used as sediment basins during construction. To prevent sediment from clogging, erosion and sediment controls should remain in place and runoff should be diverted from the infiltration facility until the contributing drainage area is fully stabilized and sediment removal from catch basins, pre-treatment devices and maintenance hole sumps has been completed.
+
Infiltration practice locations should not be used as sediment basins during construction. To prevent sediment from clogging, erosion and sediment controls should remain in place and runoff should be diverted from the infiltration facility until the contributing drainage area is fully stabilized and sediment removal from catch basins, pre-treatment devices and maintenance hole sumps has been completed.
   −
==Operation and Maintenance==
+
 
 +
Take a look at the [[Construction]] and [[Sub-surface components]] pages by clicking below for further details about proper construction practices:
 +
 
 +
{{Clickable button|[[File:Soakaways infiltration et.al.png|250 px|link=https://https://wiki.sustainabletechnologies.ca/wiki/Sub-surface_components]]}}
 +
 
 +
==Inspection and Maintenance==
 
Infiltration trenches, chambers and soakaways will continue to function during winter months if the overflow outlet is located below the local maximum frost penetration depth (i.e. frost line).  
 
Infiltration trenches, chambers and soakaways will continue to function during winter months if the overflow outlet is located below the local maximum frost penetration depth (i.e. frost line).  
    
Routine inspection and maintenance consists of checking and cleaning trash, debris and sediment from pre-treatment devices, inlets and outlets twice a year in the spring and/or late fall, or when pre-treatment device sump is half full. Use hydro-vac truck to remove sediment from catch basin sumps, OGS and isolated chamber row filter pre-treatment devices.  To clean isolated chamber row filters use a vacuum truck equipped with rear-facing jet nozzle for cleaning large diameter pipes or culverts.  
 
Routine inspection and maintenance consists of checking and cleaning trash, debris and sediment from pre-treatment devices, inlets and outlets twice a year in the spring and/or late fall, or when pre-treatment device sump is half full. Use hydro-vac truck to remove sediment from catch basin sumps, OGS and isolated chamber row filter pre-treatment devices.  To clean isolated chamber row filters use a vacuum truck equipped with rear-facing jet nozzle for cleaning large diameter pipes or culverts.  
   −
Monitoring of storage reservoir water level during and after natural or simulated storm events using the monitoring well should be performed periodically to verify the facility drains within the required drainage time (typically 72 hours).  Should be performed as part of inspections following construction or major rehabilitation prior to assumption, and every 15 years at a minimum, to track drainage performance over time and determine when replacement is needed.
+
Monitoring of storage reservoir water level during and after natural or simulated storm events using the monitoring well should be performed periodically to verify the facility drains within the required drainage time (typically 72 hours).  Should be performed as part of inspections following construction or major rehabilitation prior to assumption, and every 15 years at a minimum, to track drainage performance over time and determine when replacement is needed. <br>
 +
</br>
 +
Take a look at the [[Inspection and Maintenance: Underground Infiltration Systems]] page by clicking below for further details about proper inspection and maintenance practices:
 +
 
 +
{{Clickable button|[[File:Cover page underground.PNG|150px|link=https://wiki.sustainabletechnologies.ca/wiki/Inspection_and_Maintenance:_Underground_Infiltration_System]]}}
 +
 
 +
==Life Cycle Costs==
 +
To learn about Life Cycle Costs associated with this practice (i.e. Pre-construction, Excavation, Materials & Installation, Project Management, Overhead, Inspection and Maintenance, Rehabilitation and other associated costs), visit the [[Infiltration Chamber: Life Cycle Costs]] page to view a cost estimate for a polymeric chamber system.  Alternatively you can use the [https://sustainabletechnologies.ca/lid-lcct/ STEP's Low Impact Development Life Cycle Costing Tool (LID LCCT)] to generate cost estimates customized to your own LID stormwater design project specifications.
 +
 
 +
Take a look at the [[Infiltration Chamber: Life Cycle Costs]] page by clicking below for further details:
 +
 
 +
{{Clickable button|[[File:ConstructionTable InfilChamb Full Infil.PNG|150 px|link=https://wiki.sustainabletechnologies.ca/wiki/Infiltration_Chamber:_Life_Cycle_Costs]]}}
    
==Gallery==
 
==Gallery==
Line 217: Line 236:  
===Plastic chambers===
 
===Plastic chambers===
 
*[http://stormtechcalc.azurewebsites.net/index.html ADS chambers design tool]
 
*[http://stormtechcalc.azurewebsites.net/index.html ADS chambers design tool]
*[http://www.armtec.com/products/product_detail/cutlec-contactor-and-recharger-chambers/161/339/l:eng Armtec]
+
*[https://armtec.com/stormwater-management/cultec-stormwater-chambers/ Armtec]
 
*[http://echelonenvironmental.ca/stormwater/stormwater-storage/ Echelon]
 
*[http://echelonenvironmental.ca/stormwater/stormwater-storage/ Echelon]
 
*[http://cultec.com/products/contactor-recharger-stormwater-chambers/ Cultec]
 
*[http://cultec.com/products/contactor-recharger-stormwater-chambers/ Cultec]
Line 223: Line 242:  
*[http://www.tritonsws.com/ Triton]
 
*[http://www.tritonsws.com/ Triton]
 
*[https://www.makeway.ca/ Make-Way Environmental Technologies Inc.]
 
*[https://www.makeway.ca/ Make-Way Environmental Technologies Inc.]
 +
*[https://www.prinsco.com/prinsco-markets/products/hydrostor-chamber/ Prinsco]
 +
*[http://stormchambers.com/ NDS Stormchambers]
    
===Concrete chambers===
 
===Concrete chambers===
 
*[http://stormtrap.com/products/singletrap/ Stormtrap]
 
*[http://stormtrap.com/products/singletrap/ Stormtrap]
   −
----
+
==References==
 +
[[Category:Infiltration]]
 +
[[Category: Green infrastructure]]

Navigation menu