Changes

Jump to navigation Jump to search
Created page with " <table class="table-responsive"> <table class="table table-bordered"> <caption><strong>Performance of bioretention with internal water storage<ref>Liu J, Sample D..."

<table class="table-responsive">
<table class="table table-bordered">
<caption><strong>Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref></strong></caption>
<tr class='success'>
<th class="text-center">Location</th>
<th class="text-center">Biomedia composition</th>
<th class="text-center">Media depth (cm)</th>
<th class="text-center">Internal water storage depth (cm)</th>
<th class="text-center">I/P*</th>
<th class="text-center">Runoff volume reduction (%)</th>
<th class="text-center">TSS reduction(%)</th>
<th class="text-center">TN reduction (%)</th>
<th class="text-center">TP reduction (%)</th>
</tr>
<tr><td class="text-center">Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref></td>
<td class="text-center">88% sand, 8% fines, 4% OM</td>
<td class="text-center">180</td>
<td class="text-center">150</td>
<td class="text-center">47</td>
<td class="text-center">97</td>
<td class="text-center">99</td>
<td class="text-center">99</td>
<td class="text-center">99</td></tr>
<tr><td class="text-center">Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref></td>
<td class="text-center">88% sand, 8% fines, 4% OM</td>
<td class="text-center">180</td>
<td class="text-center">150</td>
<td class="text-center">47</td>
<td class="text-center">97</td>
<td class="text-center">99</td>
<td class="text-center">99</td>
<td class="text-center">99</td></tr>
<tr><td rowspan=4 class="text-center">North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref></td>
<td rowspan=4 class="text-center">96% sand, 4% fines</td>
<td rowspan=2 class="text-center">110</td>
<td class="text-center">88</td>
<td rowspan=2 class="text-center">12</td>
<td class="text-center">89</td>
<td rowspan=4 class="text-center">58</td>
<td rowspan=4 class="text-center">58</td>
<td rowspan=4 class="text-center">-10</td></tr>
<tr><td class="text-center">58</td>
<td class="text-center">93</td>
</tr>
<tr><td rowspan=2 class="text-center">96</td>
<td class="text-center">72</td>
<td rowspan=2 class="text-center">13</td>
<td class="text-center">98</td>
</tr>
<tr><td class="text-center">42</td>
<td class="text-center">100</td>
</tr>
<tr><td class="text-center">North Carolina<ref>Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).</ref></td>
<td class="text-center">loamy sand, 3% OM</td>
<td class="text-center">120</td>
<td class="text-center">60</td>
<td class="text-center">20</td>
<td class="text-center">>99</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
</tr>
<tr><td rowspan=2 class="text-center">North Carolina<ref>Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.</ref></td>
<td rowspan=2 class="text-center">98% sand, 2% fines</td>
<td class="text-center">90</td>
<td class="text-center">30</td>
<td class="text-center">12</td>
<td class="text-center">90</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
</tr>
<tr><td class="text-center">90</td>
<td class="text-center">60</td>
<td class="text-center">12</td>
<td class="text-center">98</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
</tr>
<tr><td rowspan=2 class="text-center">North Carolina<ref>Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.</ref></td>
<td rowspan=2 class="text-center">15% sand, 80% fines, 5% OM</td>
<td class="text-center">60</td>
<td class="text-center">45</td>
<td class="text-center">68</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
<td class="text-center">54</td>
<td class="text-center">63</td>
</tr>
<tr><td class="text-center">90</td>
<td class="text-center">75</td>
<td class="text-center">68</td>
<td class="text-center">-</td>
<td class="text-center">-</td>
<td class="text-center">54</td>
<td class="text-center">58</td>
</tr>
</table>
*Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell
</table>
====References====
<em><references /></em>
{{:Feedback}}

<strong>For review</strong>
http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000876
8,255

edits

Navigation menu