Changes

Jump to navigation Jump to search
Line 80: Line 80:     
==Cost Summary Tables==
 
==Cost Summary Tables==
Total life cycle cost estimates for the three [[Bioretention]] configurations vary substantially with the [[Bioretention: Partial infiltration| Partial Infiltration]] design being highest ($113,800.83), followed closely by [[Stormwater planter| No Infiltration]] design ($109,113.76), and [[Bioretention: Full infiltration| Full Infiltration]] design being the lowest ($80,392.33).<br>
+
Total life cycle cost estimates over the 50 year evaluation period for the three [[Bioretention]] configurations vary substantially with the [[Bioretention: Partial infiltration| Partial Infiltration]] design being highest ($190,132.53), followed closely by [[Stormwater planter| No Infiltration]] design ($185,304.84), and [[Bioretention: Full infiltration| Full Infiltration]] design being the lowest ($153,805.69).<br>
    
It is notable that a sensitivity analysis was conducted in 2019 to compare construction cost estimates generated by the tool to actual costs of implemented projects. '''The analysis found that tool estimates were typically within ±14% of actual construction costs'''<ref>Credit Vally Conservation (CVC). 2019. Life-cycle costing tool 2019 update: sensitivity analysis. Credit Valley Conservation, Mississauga, Ontario. https://sustainabletechnologies.ca/app/uploads/2020/04/LCCT-Sensitivity-Analysis_March2020.pdf</ref>
 
It is notable that a sensitivity analysis was conducted in 2019 to compare construction cost estimates generated by the tool to actual costs of implemented projects. '''The analysis found that tool estimates were typically within ±14% of actual construction costs'''<ref>Credit Vally Conservation (CVC). 2019. Life-cycle costing tool 2019 update: sensitivity analysis. Credit Valley Conservation, Mississauga, Ontario. https://sustainabletechnologies.ca/app/uploads/2020/04/LCCT-Sensitivity-Analysis_March2020.pdf</ref>
Line 87: Line 87:  
[[File:Picture for page.PNG|thumb|700px|STEP staff member conducting performance analysis of a bioretention feature at Kortright Centre in Vaughan, ON. (Source: STEP, 2016<ref>Performance Comparison of Surface and Underground Stormwater Infiltration Practices - TECHNICAL BRIEF. Low Impact Development Series. https://sustainabletechnologies.ca/app/uploads/2016/08/BioVSTrench_TechBrief__July2015.pdf</ref>)]]
 
[[File:Picture for page.PNG|thumb|700px|STEP staff member conducting performance analysis of a bioretention feature at Kortright Centre in Vaughan, ON. (Source: STEP, 2016<ref>Performance Comparison of Surface and Underground Stormwater Infiltration Practices - TECHNICAL BRIEF. Low Impact Development Series. https://sustainabletechnologies.ca/app/uploads/2016/08/BioVSTrench_TechBrief__July2015.pdf</ref>)]]
   −
[[File:Design Table Bio Full Infil Update.PNG|700px]]<br>
+
[[File:Design Table Bio Full Infil Update 2023.PNG|700px]]<br>
 
</br>
 
</br>
    
===Partial Infiltration===
 
===Partial Infiltration===
[[File:Design Table Bio Partial Infil update.PNG|700px]]<br>
+
[[File:Design Table Bio Partial Infil update 2023.PNG|700px]]<br>
 
</br>
 
</br>
    
===No Infiltration (Filtration Only)===
 
===No Infiltration (Filtration Only)===
[[File:Design Table Bio No Infil Update.PNG|700px]]<br>
+
[[File:Design Table Bio No Infil Update 2023.PNG|700px]]<br>
    
==References==
 
==References==

Navigation menu