Changes

Jump to navigation Jump to search
m
no edit summary
Line 6: Line 6:  
The one water approach is predicated on the fact that drinking water, wastewater and stormwater systems share intrinsic connections, and that none of these systems can be managed in isolation from one another. The ultimate goal of the one water approach is to mimic the natural hydrologic cycle. The figure to the right illustrates how different hydrologic components are altered as progressive urbanization occurs.  
 
The one water approach is predicated on the fact that drinking water, wastewater and stormwater systems share intrinsic connections, and that none of these systems can be managed in isolation from one another. The ultimate goal of the one water approach is to mimic the natural hydrologic cycle. The figure to the right illustrates how different hydrologic components are altered as progressive urbanization occurs.  
   −
The Water Sensitive Urban Design (WSUD) panel illustrates how the pre-development water balance can be largely maintained using the One Water approach (note: WSUD is a term commonly used in the Middle East and Australia, and is similar is nature to the term LID, which is the most-commonly used term in North America). In the natural hydrologic cycle, evapotranspiration and infiltration are the dominant pathways within the hydrologic cycle, and as a result this condition produces relatively little runoff. In urban environments, a rise in impervious surfaces coupled with a net loss of vegetation (interception storage and evapotranspiration) and the implementation of a dense storm sewer network significantly reduce evapotranspiration and infiltration and produce large amounts of urban runoff in much shorter timeframes. Within the urban water balance, piped and/or pumped potable water and wastewater discharges are also represented within the cycle.
+
In the natural hydrologic cycle, [[evapotranspiration]] and [[infiltration]] are the dominant pathways within the hydrologic cycle, and as a result this condition produces relatively little runoff. In urban environments, a rise in impervious surfaces coupled with a net loss of vegetation (interception storage and evapotranspiration) and the implementation of a dense storm sewer network significantly reduce evapotranspiration and infiltration and produce large amounts of urban runoff in much shorter timeframes. Within the urban water balance, piped and/or pumped potable water and wastewater discharges are also represented within the cycle.
    
==Water resource management in Ontario==
 
==Water resource management in Ontario==
8,255

edits

Navigation menu