Changes

Jump to navigation Jump to search
no edit summary
Line 1: Line 1: −
The [[green roofs|green roof]] media used in Ontario can be classed according to proportion of composted biological material. Some existing installations use materials which comply with FLL guidelines, whilst others use a much higher proportion of [[compost]]<ref>Hill, J., Drake, J., and Sleep, B. (2016). “Comparisons of extensive green roof media in Southern Ontario.” Ecological Engineering, Elsevier B.V., 94, 418–426.</ref>.  
+
The [[green roofs|green roof]] media used in Ontario can be classed according to proportion of composted biological material. Some existing installations use materials which comply with FLL guidelines, whilst others use a much higher proportion of [[compost]]<ref>Hill, J., Drake, J., and Sleep, B. (2016). “Comparisons of extensive green roof media in Southern Ontario.” Ecological Engineering, Elsevier B.V., 94, 418–426. https://www.sciencedirect.com/science/article/abs/pii/S0925857416302804?via%3Dihub</ref>.  
    
ASTM International have a number of standards relating to various design considerations for green roofs. These standards provide good technical advice on the testing of systems and components.
 
ASTM International have a number of standards relating to various design considerations for green roofs. These standards provide good technical advice on the testing of systems and components.
Line 10: Line 10:  
In many proprietary systems the default option for planting medium will be a granular material with very low organic matter content. However, many companies can arrange for a high [[organic matter]] alternative to be substituted if requested.   
 
In many proprietary systems the default option for planting medium will be a granular material with very low organic matter content. However, many companies can arrange for a high [[organic matter]] alternative to be substituted if requested.   
   −
Increasing the depth of planting medium from 10 cm to 15 cm has been shown to benefit the vegetation <ref>MacIvor JS, Margolis L, Puncher CL, Carver Matthews BJ. Decoupling factors affecting plant diversity and cover on extensive green roofs. J Environ Manage. 2013;130:297-305. doi:10.1016/j.jenvman.2013.09.014.</ref>, however stormwater retention was not improved with this increase in depth <ref>Hill, J., Drake, A. P. J., Sleep, B., and Margolis, L. (2017). “Influences of Four Extensive Green Roof Design Variables on Stormwater Hydrology.” Journal of Hydrologic Engineering. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0001534</ref>
+
Increasing the depth of planting medium from 10 cm to 15 cm has been shown to benefit the vegetation <ref>MacIvor JS, Margolis L, Puncher CL, Carver Matthews BJ. Decoupling factors affecting plant diversity and cover on extensive green roofs. J Environ Manage. 2013;130:297-305. https://www.sciencedirect.com/science/article/abs/pii/S0301479713006051?via%3Dihub</ref>, however stormwater retention was not improved with this increase in depth <ref>Hill, J., Drake, A. P. J., Sleep, B., and Margolis, L. (2017). “Influences of Four Extensive Green Roof Design Variables on Stormwater Hydrology.” Journal of Hydrologic Engineering. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0001534</ref>
    
{|class="wikitable"
 
{|class="wikitable"

Navigation menu