Line 6: |
Line 6: |
| [[Permeable pavement|Porous Asphalt]] is an alternative to traditional impervious pavements that allow stormwater to drain through them and into a storage reservoir below. Porous asphalt's performance and integrity is similar to that of other standard asphalt pavements. Porous asphalt contains air pockets, which are created during the development process of the paver due to the inclusion of less fines and [[sand]] content in comparison to traditional asphalt. The "air pcokets" or greater void spaces are what allow stormwater to infiltrate through the surface level to the underlying stone [[Reservoir aggregate|aggregate layer]] bed<ref>City of Toronto. 2017. Toronto Green Streets Technical Guidelines. Version 1.0. August, 2017. https://www.toronto.ca/legdocs/mmis/2017/pw/bgrd/backgroundfile-107515.pdf</ref>. The benefit of porous asphalt in comparison to some other permeable pavements is that it doesn't require third party, proprietary components, nor specialized paving equipment for installation<ref>Speight, J.G., 2016. Asphalt materials science and technology (pp. 437-474). Butterworth-Heinemann is. https://link.springer.com/article/10.1557/mrs.2016.267#article-info</ref>. | | [[Permeable pavement|Porous Asphalt]] is an alternative to traditional impervious pavements that allow stormwater to drain through them and into a storage reservoir below. Porous asphalt's performance and integrity is similar to that of other standard asphalt pavements. Porous asphalt contains air pockets, which are created during the development process of the paver due to the inclusion of less fines and [[sand]] content in comparison to traditional asphalt. The "air pcokets" or greater void spaces are what allow stormwater to infiltrate through the surface level to the underlying stone [[Reservoir aggregate|aggregate layer]] bed<ref>City of Toronto. 2017. Toronto Green Streets Technical Guidelines. Version 1.0. August, 2017. https://www.toronto.ca/legdocs/mmis/2017/pw/bgrd/backgroundfile-107515.pdf</ref>. The benefit of porous asphalt in comparison to some other permeable pavements is that it doesn't require third party, proprietary components, nor specialized paving equipment for installation<ref>Speight, J.G., 2016. Asphalt materials science and technology (pp. 437-474). Butterworth-Heinemann is. https://link.springer.com/article/10.1557/mrs.2016.267#article-info</ref>. |
| | | |
− | Depending on the native soil properties and site constraints, the system may be designed for full infiltration, partial infiltration, or as a non-infiltrating detention and filtration only practice. They can be used for low traffic roads, parking, driveways, and walk ways, and are ideal where space for other surface BMPs is limited. Permeable pavement types include: | + | Depending on the native soil properties and site constraints, the system may be designed for full infiltration, partial infiltration, or as a non-infiltrating detention and filtration only practice. They can be used for low traffic roads, parking, driveways, and walk ways, and are ideal where space for other surface BMPs is limited. |
− | *permeable interlocking pavers (concrete or composite materials)
| |
− | *grid systems (concrete or composite materials)
| |
− | *pervious concrete (poured-in-place or pre-cast)
| |
− | *porous asphalt
| |
− | *permeable articulating block/mat systems
| |
| | | |
− | For the sake of this page and associated costs/figures below the information found here relate to '''Porous Asphalt''', for costs and information associated with [[Permeable pavements: Life Cycle Costs|Permeable pavements click here]]. STEP conducted life cycle costs estimates for each of permeable pavements 3 design configurations which can be viewed below. To design your own life cycle cost estimates that can be adapted to fit your project budget and unique development needs access the updated [https://sustainabletechnologies.ca/lid-lcct/ LCCT Tool here].
| + | The information found here relates to '''Porous Asphalt''', for costs and information associated with [[Permeable pavements: Life Cycle Costs|Permeable Interlocking Concrete Pavers click here]]. STEP conducted life cycle costs estimates for each of permeable pavements 3 design configurations which can be viewed below. To design your own life cycle cost estimates that can be adapted to fit your project budget and unique development needs access the updated [https://sustainabletechnologies.ca/lid-lcct/ LCCT Tool here]. |
| | | |
| ===Design Assumptions=== | | ===Design Assumptions=== |