Changes

Jump to navigation Jump to search
Line 81: Line 81:  
:<math>d=a[e^{\left ( -bD \right )} -1]</math>
 
:<math>d=a[e^{\left ( -bD \right )} -1]</math>
 
Where
 
Where
<math>a=\frac{Ap}{x}-\frac{i Ai}{x f'}</math>
+
<math>a=\frac{Ar}{x}-\frac{i Ai}{x f'}</math>
 
and  
 
and  
<math>b=\frac{xf'}{nAp}</math>
+
<math>b=\frac{xf'}{nAr}</math>
    
(The rearrangement to calculate the required footprint area of the facility for a given depth using three dimensional drainage is not available at this time. Elegant submissions are invited.)<br>
 
(The rearrangement to calculate the required footprint area of the facility for a given depth using three dimensional drainage is not available at this time. Elegant submissions are invited.)<br>
Line 97: Line 97:  
<br>
 
<br>
 
To calculate the time (''t'') to fully drain the facility assuming three-dimensional drainage:  
 
To calculate the time (''t'') to fully drain the facility assuming three-dimensional drainage:  
<math>t=\frac{nAp}{f'x}ln\left [ \frac{\left (d+ \frac{Ap}{x} \right )}{\left(\frac{Ap}{x}\right)}\right]</math>
+
<math>t=\frac{nAr}{f'x}ln\left [ \frac{\left (d+ \frac{Ar}{x} \right )}{\left(\frac{Ar}{x}\right)}\right]</math>
 
Where "ln" means natural logarithm of the term in square brackets
 
Where "ln" means natural logarithm of the term in square brackets
    
[[category: modeling]]
 
[[category: modeling]]
 
[[category: infiltration]]
 
[[category: infiltration]]

Navigation menu