Difference between revisions of "Rainwater harvesting: TTT"
Jump to navigation
Jump to search
Jenny Hill (talk | contribs) |
Jenny Hill (talk | contribs) |
||
Line 3: | Line 3: | ||
Once the size of cistern has been determined, it can easily be modeled in many open source and proprietary applications. For planning purposes, a RWH system could be integrated into a site plan using STEP's Treatment Train Tool. This tool provides a graphical user interface and simplified inputs on the EPA SWMM model. It is free to download, click image above. | Once the size of cistern has been determined, it can easily be modeled in many open source and proprietary applications. For planning purposes, a RWH system could be integrated into a site plan using STEP's Treatment Train Tool. This tool provides a graphical user interface and simplified inputs on the EPA SWMM model. It is free to download, click image above. | ||
In a typical configuration: | In a typical configuration: | ||
− | {|class=" | + | {|class="wikitable" |
|- | |- | ||
|Catchment (roof)||100% impervious | |Catchment (roof)||100% impervious |
Revision as of 02:04, 8 September 2017
Once the size of cistern has been determined, it can easily be modeled in many open source and proprietary applications. For planning purposes, a RWH system could be integrated into a site plan using STEP's Treatment Train Tool. This tool provides a graphical user interface and simplified inputs on the EPA SWMM model. It is free to download, click image above. In a typical configuration:
Catchment (roof) | 100% impervious |
The rainwater harvesting system would be a 'Storage' Element with the following properties: | |
Storage type | No removal |
? | Lined |
Underlying soil | Doesn't matter |
Evaporation factor | 0 |
Suction head (mm) | 0 |
Saturated conductivity (mm/hr) | 0 |
Initial soil moisture deficit (fraction) | 0 |
The dimensions of the rainwater cistern can be placed into the fields:
|