Difference between revisions of "Stormwater Tree Trenches"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
m
Line 27: Line 27:
 
==Overview==
 
==Overview==
 
Trees can be incorporated into [[bioretention]] cells with other plant types, or otherwise into their own planting pits.  
 
Trees can be incorporated into [[bioretention]] cells with other plant types, or otherwise into their own planting pits.  
==Performance==
 
Tree canopies intercept and store rainfall, thereby modifying stormwater runoff and reducing demands on urban stormwater infrastructure (Xiao et al., 1998; Xiao et al., 2000; Xiao and McPherson, 2002; Xiao et al., 2006). Canopy interception reduces both the actual runoff volumes, and delays the onset of peak flows (Davey Resource Group, 2008).
 
 
The extent of interception is influenced by a number of factors including tree architecture and it has been estimated that a typical medium-sized canopy tree can intercept as much as 9000 litres of rainfall year. (Crockford and Richardson, 2000).
 
  
A study of rainfall interception by street and park trees in Santa Monica, California found that interception rates varied by tree species and size, with broadleaf evergreen trees provided the most rainfall interception (Xiao and McPherson, 2002). Rainfall interception was found to range from 15.3% for a small jacaranda (Jacaranda mimosifolia) to 66.5% for a mature brush box (Tristania conferta now known as Lophostemon confertus). Over the city as a whole the trees intercepted 1.6% of annual precipitation and the researchers calculated that the annual value of avoided stormwater treatment and flood control costs associated with this reduced runoff was US$110,890 (US$3.60 per tree).
 
  
 
==Planning considerations==
 
==Planning considerations==
Line 38: Line 33:
  
 
==Design==
 
==Design==
 
+
===Species selection===
===Sizing===
+
[[Trees: List]]
 +
===Planting pit Sizing===
 
[[Bioretention: Sizing]]
 
[[Bioretention: Sizing]]
 
===Canopy interception===
 
*http://www.mdpi.com/2072-4292/9/11/1202/pdf
 
*http://lfs-mlws.sites.olt.ubc.ca/files/2014/10/an_analytical_model_of_rainfall_interception_by_urban_trees.pdf
 
*https://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/biophysical-parameters/9162
 
*https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999WR900003
 
 
==Components==
 
 
===Inlets===
 
===Inlets===
 
Multiple methods for distribution and conveyance of runoff into the system are recommended for redundancy and conservative designs.  
 
Multiple methods for distribution and conveyance of runoff into the system are recommended for redundancy and conservative designs.  
Line 56: Line 44:
 
*direct infiltration from permeable paving.
 
*direct infiltration from permeable paving.
 
See also [[Inlets]] and [[pretreatment]]
 
See also [[Inlets]] and [[pretreatment]]
 
 
===Underdrain===
 
===Underdrain===
 
[[Underdrain]]
 
[[Underdrain]]
  
==Species selection==
+
==Performance==
<div class="toccolours mw-collapsible mw-collapsed">
+
Tree canopies intercept and store rainfall, thereby modifying stormwater runoff and reducing demands on urban stormwater infrastructure (Xiao et al., 1998; Xiao et al., 2000; Xiao and McPherson, 2002; Xiao et al., 2006). Canopy interception reduces both the actual runoff volumes, and delays the onset of peak flows (Davey Resource Group, 2008).
 +
 
 +
The extent of interception is influenced by a number of factors including tree architecture and it has been estimated that a typical medium-sized canopy tree can intercept as much as 9000 litres of rainfall year. (Crockford and Richardson, 2000).
  
==Tree species==
+
A study of rainfall interception by street and park trees in Santa Monica, California found that interception rates varied by tree species and size, with broadleaf evergreen trees provided the most rainfall interception (Xiao and McPherson, 2002). Rainfall interception was found to range from 15.3% for a small jacaranda (Jacaranda mimosifolia) to 66.5% for a mature brush box (Tristania conferta now known as Lophostemon confertus). Over the city as a whole the trees intercepted 1.6% of annual precipitation and the researchers calculated that the annual value of avoided stormwater treatment and flood control costs associated with this reduced runoff was US$110,890 (US$3.60 per tree).
<div class="mw-collapsible-content">
+
===Canopy interception===
{{:Trees: List}}
+
*http://www.mdpi.com/2072-4292/9/11/1202/pdf
</div></div>
+
*http://lfs-mlws.sites.olt.ubc.ca/files/2014/10/an_analytical_model_of_rainfall_interception_by_urban_trees.pdf
 +
*https://www.nrcan.gc.ca/earth-sciences/land-surface-vegetation/biophysical-parameters/9162
 +
*https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999WR900003
  
==Performance and research==
 
 
[[File:TreeTranspiration.png|thumb|Trees suck! (Abstracted from Phyto, by K. Kennen)]]
 
[[File:TreeTranspiration.png|thumb|Trees suck! (Abstracted from Phyto, by K. Kennen)]]
  

Revision as of 15:52, 18 December 2018

Soil cellsSoil cellsBioretention: Filter mediaChoking layerReservoir gravelReservoir gravelReservoir gravelForebaysForebaysForebaysForebaysSlotted drainDepressed drainTreesTreesPerennials: ListPerennials: ListPerennials: ListOverflowOverflowUnderdrain
This is an image map of an extended tree pit, clicking on components will load the appropriate article.

Overview[edit]

Trees can be incorporated into bioretention cells with other plant types, or otherwise into their own planting pits.


Planning considerations[edit]

A commonly held view is that a tree's root system will be similar to it's visible crown. For many trees, this is not the case, as roots will more often spread much more widely, but to a shallower depth [1]. For more detailed information on planning (site) considerations see Bioretention

Design[edit]

Species selection[edit]

Trees: List

Planting pit Sizing[edit]

Bioretention: Sizing

Inlets[edit]

Multiple methods for distribution and conveyance of runoff into the system are recommended for redundancy and conservative designs. Combinations may be made of:

  • tree well flow,
  • catch basins and distribution pipes, and
  • direct infiltration from permeable paving.

See also Inlets and pretreatment

Underdrain[edit]

Underdrain

Performance[edit]

Tree canopies intercept and store rainfall, thereby modifying stormwater runoff and reducing demands on urban stormwater infrastructure (Xiao et al., 1998; Xiao et al., 2000; Xiao and McPherson, 2002; Xiao et al., 2006). Canopy interception reduces both the actual runoff volumes, and delays the onset of peak flows (Davey Resource Group, 2008).

The extent of interception is influenced by a number of factors including tree architecture and it has been estimated that a typical medium-sized canopy tree can intercept as much as 9000 litres of rainfall year. (Crockford and Richardson, 2000).

A study of rainfall interception by street and park trees in Santa Monica, California found that interception rates varied by tree species and size, with broadleaf evergreen trees provided the most rainfall interception (Xiao and McPherson, 2002). Rainfall interception was found to range from 15.3% for a small jacaranda (Jacaranda mimosifolia) to 66.5% for a mature brush box (Tristania conferta now known as Lophostemon confertus). Over the city as a whole the trees intercepted 1.6% of annual precipitation and the researchers calculated that the annual value of avoided stormwater treatment and flood control costs associated with this reduced runoff was US$110,890 (US$3.60 per tree).

Canopy interception[edit]

Trees suck! (Abstracted from Phyto, by K. Kennen)

Galleries[edit]

Open tree pits[edit]

Soil cells[edit]

External links[edit]

In our effort to make this guide as functional as possible, we have decided to include proprietary systems and links to manufacturers websites.
Inclusion of such links does not constitute endorsement by the Sustainable Technologies Evaluation Program.
Lists are ordered alphabetically; link updates are welcomed using the form below.


  1. Crow, P. (2005). The Influence of Soils and Species on Tree Root Depth. Edinburgh. Retrieved from https://www.forestry.gov.uk/pdf/FCIN078.pdf/$FILE/FCIN078.pdf