Difference between revisions of "Flow through perforated pipe"
Jump to navigation
Jump to search
Jenny Hill (talk | contribs) m |
Jenny Hill (talk | contribs) m |
||
Line 15: | Line 15: | ||
<math>\frac{0.008\ m \times 0.0012\ m\times6}{0.03\ m }= 0.0024\ m^{2}/m</math> | <math>\frac{0.008\ m \times 0.0012\ m\times6}{0.03\ m }= 0.0024\ m^{2}/m</math> | ||
Then: | Then: | ||
− | <math>Q_{max, p}=0.5\times 0.61\times 0.0024\ m^{2} | + | <math>Q_{max, p}=0.5\times 0.61\times 0.0024\ m^{2}/m\sqrt{2\cdot 9.81\ m/s^{2}\cdot \sum 1.1 m}</math> |
Revision as of 03:30, 25 February 2018
Manufacturers of perforated pipe are often able to provide the open area per meter length.
Where:d is the coefficient of discharge (0.61 for a sharp edged orifice),
- B is the clogging factor (between 0.5 to calculate a for matured installation and 1 to calculate a new perfectly performing BMP),
- Cd is the coefficient of discharge (usually 0.61 for the sharp edge created by relatively thin pipe walls),
- Ao is the total open area per unit length of pipe (m2/m),
- g is acceleration due to gravity (m/s2)
- Σ d is the total depth of bioretention components over the perforated pipe (mm) (e.g. ponding/mulch/filter media/choker layer),
Example calculation[edit]
A part used roll of 100 mm diameter perforated pipe appears long enough to use for a stormwater planter project. The initial design for the planters includes 750 mm depth of filter medium, 50 mm rock mulch, and a further ponding of 300 mm. Upon inspection the pipe is found to have perforations of 8 x 1.5 mm on six sides, repeated every 3 cm along the pipe. To calculate the maximum flow rate, first the open area per meter is calculated: Then: