Difference between revisions of "LID opportunities on public land"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 71: Line 71:
  
 
==Parks==
 
==Parks==
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
 
[[File:Example.jpg|thumb|The bioretention area installed at O’Connor Park in Mississauga is part of a stormwater management system that treats parking lot runoff prior to discharging to a local wetland. (Source: CVC)]]
 
[[File:Example.jpg|thumb|The bioretention area installed at O’Connor Park in Mississauga is part of a stormwater management system that treats parking lot runoff prior to discharging to a local wetland. (Source: CVC)]]
 
[[File:Example1.jpg|thumb|Urban parkettes may look small, but they have the potential to treat a large surface area of road. Typical ratios of impervious drainage area to a bioretention range from 5:1 to 15:1. (Source: CVC)]]
 
[[File:Example1.jpg|thumb|Urban parkettes may look small, but they have the potential to treat a large surface area of road. Typical ratios of impervious drainage area to a bioretention range from 5:1 to 15:1. (Source: CVC)]]
Line 133: Line 136:
  
 
[[File:Example5.jpg|thumb|When installing new parks equipment, consider whether the LID practices can be integrated into the design. Here a bioswale has been built into the landscape between a playground and sidewalk. (Source: CVC)]]
 
[[File:Example5.jpg|thumb|When installing new parks equipment, consider whether the LID practices can be integrated into the design. Here a bioswale has been built into the landscape between a playground and sidewalk. (Source: CVC)]]
 +
 +
</div>
  
 
[[Category:Planning]]
 
[[Category:Planning]]

Revision as of 19:10, 9 January 2018

Small- and large-scale projects[edit]

The scale of your LID project will largely determine how to proceed. While you can usually complete small-scale LID projects with in-house expertise and resources, large-scale projects require external support from consultants and contractors.

Small-scale projects[edit]

A no-mow zone is a landscape alternative that does not require construction activities. (Source: Aquafor Beech)
A student helps with planting at Fletchers Creek Senior School. Small-scale LID projects are a great way to engage with the next generation of environmental stewards. Source: CVC

Starting with small-scale projects is a good strategy to increase public interest in LID practices, gauge municipal support, and gain retrofit experience. Small-scale projects include retrofitting your site with landscape alternatives, rain barrels, enhancements of existing swales, or using pollution prevention strategies and practices. Small-scale projects require fewer resources and a smaller project budget:

  • They do not require integration into capital works projects
  • Engineering consultants are not required
  • Contractors may not be not required
  • External approvals are not required
  • Consultation with the public is limited

Due to less financial commitment, it can be easier to build colleague support and to gain supervisor approval for small-scale projects. However, small-scale projects like landscape alternatives and pollution prevention may not be easily identified as LID practices by the public. Your project team should consider establishing educational signage to inform the public.

Pollution prevention (P2) projects are great small-scale projects for municipal facilities, such as schools and public works yards. Many P2 techniques and strategies do not require construction, consultants or contractors. In fact, simply adding signage to a site is a simple and easy to implement pollution prevention at municipal facilities.

A successful small-scale LID retrofit project is a good indication that you are ready to take on a more intensive retrofit project. You now know the resources that are available and understand the internal municipal processes required to move a LID project from planning to finished product.

Large-scale projects[edit]

When installing new parks equipment, consider whether the LID practices can be integrated into the design. Here a bioswale has been built into the landscape between a playground and sidewalk. (Source: CVC)

Large-scale projects require significantly more effort, budget and staff than small-scale projects. Large-scale LID practices include:

Consider a large-scale project if your municipality, school or place of worship would like to be a leader in sustainability. Large-scale projects are often highly visible and attract more public attention. Large-scale projects may also be the only solution to site-specific challenges. For example, if the parking lot on your site does not have existing stormwater controls, small-scale projects are not likely to fully achieve compliance with water quality and quantity objectives. Consider using an infiltration chamber or bioswale project to meet those objectives. Before starting a large-scale retrofit project, consider the following distinctions that set these retrofits apart from small-scale projects.

Integration with capital works programs[edit]

Most large-scale LID retrofits must function with existing site infrastructure, such as storm sewers, catch basins, and pavement systems. The construction of large-scale LID practices often requires these systems to be removed, exposed, or replaced. The best time for this type of project to occur is when an infrastructure replacement or rehabilitation project is already planned.

When LID retrofits are worked into other construction projects, such as parking lot repaving, or grading or drainage improvements, there can be substantial cost savings. Whether big or small, every municipality, school and place of worship spends relatively large sums of money and substantial time planning for major capital projects. This includes redevelopment of public buildings and spaces. Many communities which have undertaken retrofits recognize that even if a relatively small portion of the project funds goes towards LID retrofits, they can retrofit large impervious surfaces and avoid new stormwater management infrastructure projects.

Municipal facility rehabilitation is typically forecast well in advance of the project. Parking lot paving is typically worked into municipal budgets based on expected life cycle and observed wear. As such, funds may be set aside prior to the project planning phases. Long-term forecast budgets may also be available for site revitalization or expansion. These budget forecasts provide opportunities to compare the capital and life-cycle costs and benefits of conventional construction projects against LID retrofits.

Regulatory compliance[edit]

The objectives, technologies and standard practices associated with stormwater management are constantly evolving. It is unlikely that the stormwater management practices on your site meet modern industry standards. When you are making changes to your site, it is important to stay ahead of regulation. Your school, park, place of worship or municipal facility may not be required to improve on-site stormwater management infrastructure, but those retrofits can be beneficial and save money and time over the long term. Consider both current and future water regulations which may affect your property. Consulting with your municipality will help you determine if LID retrofits can reduce taxes or prevent costly upgrades required at a later date.

Involvement of consultants and contractors[edit]

Consultants are required for large-scale retrofit projects, specifically for the final screening of options, pre-design, detailed design, tender and contract documents, construction supervision and administration, and assumption and verification. Site contractors are also required for large-scale LID retrofits.

Ideally, contractors should be pre-qualified based on previous experience with similar LID projects. Remember, the contractor with the lowest bid does not necessarily deliver the best product.

Intensive public consultation[edit]

Stakeholders must be closely involved in the retrofit process for large-scale LID projects. These projects have longer construction windows, may have significant impacts on long term public use patterns of the site and will have significantly higher costs. Gaining public insight before LID implementation can help address public concerns and information gaps, as well as identify public supporters and champions. Public consultation can help designers tailor the project to address community concerns, values and use-patterns.

External approvals[edit]

Large-scale retrofits may require a variety of approvals at the municipal, watershed, provincial, and/or federal level. Since LID is still relatively new, you may encounter policies or bylaws that present barriers to LID retrofit projects. Alternatively, the municipality may have to amend or enforce some policies and bylaws to facilitate the implementation of LID projects on your site.

Parks[edit]

Municipal facilities[edit]

Schools[edit]

The Peel District School Board's Adult Education Centre South school partnered with the City of Mississauga to manage runoff from the adjacent street, Elm Drive, on their property. This partnership benefits the City by giving it space to provide an enhanced level of stormwater treatment, and benefited the school through the construction of new parking lay-bys for students. The site is maintained by the City of Mississauga. Source: CVC

Each distinct area of your site can be a source for runoff (referred to as a ‘source area’). These areas should be targeted when introducing LID at your school.

Targeting hard surfaces[edit]

Parking areas represent the most significant source of pollutant loading from school sites and contribute significantly to increased runoff rates in comparison to natural conditions. Parking lots of all sizes can be targeted for permeable pavement retrofits. As an added benefit, permeable pavement systems have a longer lifespan compared to conventional asphalt. High schools often have large parking lots where the capacity outweighs the demand. These areas represent opportunities to install bioswales or bioretention areas in parking lot islands. Standard curbs with small cut-outs (called ‘curb cuts’) can allow water to easily enter biorentention practices while also preventing damage from cars. Often the existing drainage patterns and catch basin locations can be preserved and integrated into the design. These practices will also function to improve pedestrian safety and calm traffic.

Other types of infiltrating practices like infiltration chambers are gaining acceptance for their easy integration with parking lot functions. These subsurface systems are typically installed over a coarse granular reservoir to provide storage and allow infiltration into native soils. Infiltration chambers under conventional asphalt systems work well on sites where parking demand does not allow space for a stormwater feature. Grassed areas adjacent the parking lots are ideal areas to implement bioswales or bioretention areas. Perforated pipe systems may also work in areas adjacent to parking lots.

Roof options[edit]

Schools typically have large flat roofs that produce a significant amount of runoff that is drained internally via rain leaders. Schools also consume large quantities of water for flushing toilets and urinals. Rainwater harvesting systems can tackle both of these issues by intercepting this rooftop runoff and re-using it for toilet flushing as well as outdoor irrigation. This option has the benefit providing an ongoing financial benefit through reduced water bills. Roof runoff can also be directed to soakaways located on passive use areas around the building. As this runoff comes into contact with fewer hard surfaces, it produces better quality runoff than roads and does not require pretreatment devices. Green roof retrofits are another retrofit option for schools. When applying for external funding from organizations, highlight the fact that green roofs reduce energy usage by providing insulation during the winter and evaporative cooling during the summer.

Pollution prevention (P2)[edit]

On school sites, P2 strategies and practices, such as modifying de-icing programs and isolating drainage from waste storage areas, can be applied to operations and maintenance activities. Discuss these changes with your school board and operations staff.

School board partnerships with municipalities[edit]

LID practices located on school grounds can also be used to treat stormwater from external properties. These partnership opportunities give schools the potential to create new revenue. Accepting and treating runoff on your existing property can make funds available through:

  • Contributions to capital projects like parking lot rehabilitations which include rain gardens, permeable pavements, or subsurface infiltration facilities
  • Ongoing revenues from long-term land leases to accommodate surface or subsurface LID retrofits
  • Funds for maintenance of on-site LIDs

The table below identifies the LID practices that are common, possible and unlikely options for the source areas that you are likely to find on your school site. These source areas are:

Source areas within a typical school site.
  • Active use area
  • Passive use area
  • Pedestrian walkway
  • Internal driveway
  • Parking lot


See the landforms of a school picture on the right for ideas on how to target these areas. The table below gives a more detailed breakdown of LID options for different source areas.

LID opportunities at schools
(** = Common, * = Possible, o = Unusual)
Source area Permeable pavement Bioretention Enhanced grass swales / bioswales Green roofs Soakaways and infiltration trenches Perforated pipe systems Rainwater harvesting Landscape alternatives Prefabricated modules Pollution prevention
Active use area ** ** ** o ** * o * o **
Passive use area o ** * o ** ** o ** ** **
Pedestrian walkway ** ** ** o ** * o * o **
Internal driveway ** ** ** o ** ** o o * **
Parking lot ** ** ** o ** ** o o ** **
Building * * * ** ** * ** o o **

Places of worship[edit]

Each distinct area of a place of worship can be a source for runoff (referred to as a ‘source area’). One or more of these areas should be targeted when introducing LID at your place of worship.

Targeting hard surfaces[edit]

Hard surfaces such as parking lots are a great opportunity to implement LID. Parking lots are the main source of runoff and represent the most significant source of stormwater pollutants coming from your site. Parking lots at places of worship are typically busy only on select days of the week when groups gather for prayer or other community activities. Due to this intermittent schedule, parking lots at these facilities are often rented for other purposes during times of low usage. On sites where peak demand does not approach the total capacity of the lot, consider reducing the parking surface. Retrofit options for these large parking lot areas include permeable pavement, bioswales and bioretention areas. A benefit of permeable pavement systems is that they often have a longer lifespan than conventional infrastructure. The freeze-thaw cycle of the Ontario climate is tough on pavement. Frost heaving and slumping can cause cracks and potholes because of the expansion and contraction of water. The expected lifespan for conventional asphalt pavement in a northern climate, such as Ontario, is approximately 15 to 20 years. A well-maintained porous asphalt system can last for over 30 years, and permeable interlocking concrete pavers can have a design life of 20 to 25 years or greater.

Prefabricated modular infiltration chambers are gaining acceptance because they are easy to integrate with parking lot functions. These subsurface systems are typically installed over a coarse granular reservoir to provide water storage and allow infiltration into native soils. Infiltration chambers under conventional asphalt systems work well on sites where parking demand does not allow space for a stormwater feature.

Using LID techniques to manage stormwater can also eliminate or reduce the need for an on-site storm sewer system. By eliminating piping, failure points in the pavement, such as areas around catch basins and manholes, can be eliminated. A design that does not use storm sewers also negates the need to replace on-site piping, thereby saving long-term infrastructure replacement costs.

Landscaped areas[edit]

Landscaped or lawn areas adjacent to the parking lot or building present opportunities for implementation of LID practices such as bioswales and bioretention areas. These areas typically accept runoff from nearby hard surfaces and provide water quality and water balance benefits.

Roof options[edit]

Rainwater harvesting systems can be simple or complex depending on the architecture and roof drainage patterns of your building. Many places of worship have peaked roofs with piping to convey water from the rooftop. If your site is set up this way, it can be easy to integrate harvesting systems into the landscape surrounding your building.

Roof runoff can also be directed to soakaways located on passive use areas around your building. Due to the relatively good quality of this runoff, pre-treatment devices are not required.

Source Areas[edit]

The LID option that best fits your site will depend what types of source areas are present. Types of source areas include:

Source areas within a typical place of worship
  • Active use area
  • Passive use area
  • Pedestrian walkway
  • Internal driveway
  • Parking lot

At places of worship, pollution prevention is often associated with changes to operations and maintenance practices and has not been included in the table below.

LID opportunities at Places of Worship
(** = Common, * = Possible, o = Unusual)
Source area Permeable pavement Bioretention Enhanced grass swales / bioswales Green roofs Soakaways and infiltration chambers Perforated pipe systems Rainwater harvesting Landscape alternatives Prefabricated modules Pollution prevention
Active use area ** ** ** o ** * o * o o
Passive use area o ** * o ** ** o ** ** o
Pedestrian walkway ** ** ** o ** * o * o o
Internal driveway ** ** ** o ** ** o o * *
Parking lot ** ** ** o ** ** o o ** *
Building * * * ** ** * ** o o *