Difference between revisions of "Bioswales: Performance"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
m
Line 1: Line 1:
 
While few field studies of the pollutant removal capacity of bioswales are available from cold climate regions like Ontario, it can be assumed that they would perform similar to [[bioretention cells]].
 
While few field studies of the pollutant removal capacity of bioswales are available from cold climate regions like Ontario, it can be assumed that they would perform similar to [[bioretention cells]].
 
Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, plant uptake, soil adsorption, and microbial processes. It is important to note that there is a relationship between the water balance and water quality functions.
 
Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, plant uptake, soil adsorption, and microbial processes. It is important to note that there is a relationship between the water balance and water quality functions.
If a bioswale infiltrates and evaporates 100% of the flow from a site, then there is essentially no pollution leaving the site in surface runoff.  Furthermore, treatment of infiltrated runoff will continue to occur as it moves through the native soils. </p>
+
If a bioswale infiltrates and evaporates 100% of the flow from a site, then there is essentially no pollution leaving the site in surface runoff.  Furthermore, treatment of infiltrated runoff will continue to occur as it moves through the native soils.  
 
{|class="wikitable"
 
{|class="wikitable"
 
|-
 
|-
!style="background: darkcyan; color: white"|Design
+
!Design
!style="background: darkcyan; color: white"|Location
+
!Location
!style="background: darkcyan; color: white"|Runoff reduction
+
!Runoff reduction
 
|-
 
|-
 
|No underdrain||Washington<ref>Horner RR, Lim H, Burges SJ. HYDROLOGIC MONITORING OF THE SEATTLE ULTRA-URBAN STORMWATER MANAGEMENT PROJECTS: SUMMARY OF THE 2000-2003 WATER YEARS. Seattle; 2004. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.8665&rep=rep1&type=pdf. Accessed August 11, 2017.</ref>||>98 %
 
|No underdrain||Washington<ref>Horner RR, Lim H, Burges SJ. HYDROLOGIC MONITORING OF THE SEATTLE ULTRA-URBAN STORMWATER MANAGEMENT PROJECTS: SUMMARY OF THE 2000-2003 WATER YEARS. Seattle; 2004. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.8665&rep=rep1&type=pdf. Accessed August 11, 2017.</ref>||>98 %

Revision as of 15:07, 21 November 2017

While few field studies of the pollutant removal capacity of bioswales are available from cold climate regions like Ontario, it can be assumed that they would perform similar to bioretention cells. Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, plant uptake, soil adsorption, and microbial processes. It is important to note that there is a relationship between the water balance and water quality functions. If a bioswale infiltrates and evaporates 100% of the flow from a site, then there is essentially no pollution leaving the site in surface runoff. Furthermore, treatment of infiltrated runoff will continue to occur as it moves through the native soils.

Design Location Runoff reduction
No underdrain Washington[1] >98 %
No underdrain United Kingdom >94 %
With underdrain Maryland[2] 46 - 54 %
Runoff reduction estimate 85 %
  1. Horner RR, Lim H, Burges SJ. HYDROLOGIC MONITORING OF THE SEATTLE ULTRA-URBAN STORMWATER MANAGEMENT PROJECTS: SUMMARY OF THE 2000-2003 WATER YEARS. Seattle; 2004. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.8665&rep=rep1&type=pdf. Accessed August 11, 2017.
  2. https://www.pca.state.mn.us/sites/default/files/p-gen3-14g.pdf