Difference between revisions of "Bioretention: Performance"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 24: Line 24:
 
|-
 
|-
 
|96||72||13||98
 
|96||72||13||98
 +
|-
 +
|42||100
 
|}
 
|}
  
  
<tr><td class="text-center">58</td>
+
 
        <td class="text-center">93</td>
 
        </tr>
 
<tr><td rowspan=2 class="text-center">96</td>
 
        <td class="text-center">72</td>
 
        <td rowspan=2 class="text-center">13</td>
 
        <td class="text-center">98</td>
 
        </tr>
 
 
<tr><td class="text-center">42</td>
 
<tr><td class="text-center">42</td>
 
         <td class="text-center">100</td>
 
         <td class="text-center">100</td>

Revision as of 00:53, 15 August 2017

Performance of bioretention with internal water storage[1]
Location Filter media composition Media depth (cm) Internal water storage depth (cm) I/P* Runoff volume reduction (%) TSS reduction (%) TN reduction (%) TP reduction (%)
Montréal[2] 88% sand, 8% fines, 4% OM 180 150 47 97 99 99 99
Virginia[3] 88% sand, 8% fines, 4% OM 180 150 47 97 99 99 99
North Carolina[4] 96% sand, 4% fines 110 88 12 89 58 58 -10
58 93
96 72 13 98
42 100


42 100 North Carolina[5] loamy sand, 3% OM 120 60 20 >99 - - - North Carolina[6] 98% sand, 2% fines 90 30 12 90 - - - 90 60 12 98 - - - North Carolina[7] 15% sand, 80% fines, 5% OM 60 45 68 - - 54 63 90 75 68 - - 54 58

 *Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell


References[edit]

  1. Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.
  2. Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.
  3. DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.
  4. Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.
  5. Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).
  6. Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.
  7. Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.


For review