Line 87: |
Line 87: |
| ===[[Enhanced swales| Enhanced grass swales]]=== | | ===[[Enhanced swales| Enhanced grass swales]]=== |
| See Performance section on Enhanced swale page link above for additional information. | | See Performance section on Enhanced swale page link above for additional information. |
| + | |
| + | Recent research indicates that a conservative runoff reduction rate of 10 to 20% can be used depending on whether soils fall in [[Soil groups| hydrologic soil groups A/B or C/D,]] respectively. The runoff reduction rates can be doubled if the native soils on which the swale is located have been tilled to a depth of 300 mm and amended with compost to achieve an organic content of between 8 and 15% by weight or 30 to 40% by volume. The main contributing factors that influence runoff reduction rates for swales are: |
| + | * Native [[Soil groups|soil]] types |
| + | * [[Grading|Slope]] |
| + | * [[Vegetation|Vegetative cover]] and, |
| + | * [[Enhanced swales: Specifications|Length of the swale.]] |
| + | |
| + | {|class="wikitable" |
| + | |+Volumetric runoff reduction from enhanced swales |
| + | |- |
| + | !'''LID Practice''' |
| + | !'''Location''' |
| + | !'''<u><span title="Note: Runoff reduction estimates are based on differences between runoff volume from the practice and total precipitation over the period of monitoring unless otherwise stated." >Runoff Reduction*</span></u>''' |
| + | !'''Reference''' |
| + | |- |
| + | |rowspan="8" style="text-align: center;" | Grass Swale |
| + | |style="text-align: center;" |Brampton |
| + | |style="text-align: center;" |15 to 35%, |
| + | |style="text-align: center;" |[https://sustainabletechnologies.ca/app/uploads/2020/11/CC-Bioswale-Tech-brief-2018-FINAL.pdf| STEP (2018)]<ref>Sustainable Technologies Evaluation Program. Effectiveness of Retrofitted Roadside Biofilter Swales - County Court Boulevard, Brampton. Technical Brief. https://sustainabletechnologies.ca/app/uploads/2020/11/CC-Bioswale-Tech-brief-2018-FINAL.pdf. https://sustainabletechnologies.ca/app/uploads/2020/11/CC-Bioswale-Tech-brief-2018-FINAL.pdf</ref> |
| + | |- |
| + | |style="text-align: center;" |Sweden |
| + | |style="text-align: center;" |40 to 55%, |
| + | |style="text-align: center;" |Rujner ''et al''. (2016)<ref>Rujner, H., Leonhardt, G., Perttu, A.M., Marsalek, J. and Viklander, M. 2016. Advancing green infrastructure design: Field evaluation of grassed urban drainage swales. Modélisation/Models-Contrôle à la source/Source control. http://documents.irevues.inist.fr/bitstream/handle/2042/60477/3B7P03-124RUJ.pdf</ref> |
| + | |- |
| + | |style="text-align: center;" |Seoul, Korea |
| + | |style="text-align: center;" |40 to 75%, |
| + | |style="text-align: center;" |Rujner ''et al''. (2016)<ref>Rujner, H., Leonhardt, G., Perttu, A.M., Marsalek, J. and Viklander, M. 2016. Advancing green infrastructure design: Field evaluation of grassed urban drainage swales. Modélisation/Models-Contrôle à la source/Source control. http://documents.irevues.inist.fr/bitstream/handle/2042/60477/3B7P03-124RUJ.pdf</ref> |
| + | |- |
| + | |style="text-align: center;" |Maryland |
| + | |style="text-align: center;" |59% |
| + | |style="text-align: center;" |Davis ''et al''. (2012)<ref>Davis, A.P., Stagge, J.H., Jamil, E. and Kim, H. 2012. Hydraulic performance of grass swales for managing highway runoff. Water research, 46(20), pp.6775-6786. http://www.jstagge.com/assets/papers/Hydraulic%20performance%20of%20grass%20swales%20for%20managing.pdf </ref> |
| + | |- |
| + | |style="text-align: center;" |Los Angeles |
| + | |style="text-align: center;" |52.5%, |
| + | |style="text-align: center;" |Ackerman and Stein (2008)<ref>Ackerman, D. and Stein, E.D. 2008. Evaluating the effectiveness of best management practices using dynamic modeling. Journal of Environmental Engineering, 134(8), pp.628-639. https://www.researchgate.net/profile/Eric-Stein-2/publication/228910558_Evaluating_the_Effectiveness_of_Best_Management_Practices_Using_Dynamic_Modeling/links/0912f509278915fc77000000/Evaluating-the-Effectiveness-of-Best-Management-Practices-Using-Dynamic-Modeling.pdf</ref> |
| + | |- |
| + | |style="text-align: center;" |Various Locations |
| + | |style="text-align: center;" |40% |
| + | |style="text-align: center;" |Strecker ''et al''.(2004)<ref>Strecker, E., Quigley, M., Urbonas, B., Jones, J. 2004. State-of-the-art in comprehensive approaches to stormwater. The Water Report. Issue 6. August 15,2004. </ref> |
| + | |- |
| + | |style="text-align: center;" |France |
| + | |style="text-align: center;" |27 to 41% |
| + | |style="text-align: center;" |Barrett ''et al''. (2004)<ref>Barrett, M.E. 2008. Comparison of BMP Performance Using the International BMP Database. Journal of Irrigation and Drainage Engineering. September/October. pp. 556-561 </ref> |
| + | |- |
| + | |style="text-align: center;" |Virginia |
| + | |style="text-align: center;" |0% |
| + | |style="text-align: center;" |Schueler (1983)<ref>Schueler, T. 1983. Washington Area Nationwide Urban Runoff Project. Final Report. Metropolitan Washington Council of Governments. Washington, DC. </ref> |
| + | |- |
| + | | colspan="2" style="text-align: center;" |'''<u><span title="Note:This estimate is provided only for the purpose of initial screening of LID practices suitable for achieving stormwater management objectives and targets. Performance of individual facilities will vary depending on site specific contexts and facility design parameters and should be estimated as part of the design process and submitted with other documentation for review by the approval authority" >Runoff Reduction Estimate*</span></u>''' |
| + | |colspan="2" style="text-align: center;" |'''45% on [[Soil groups|HSG A or B soils]];''' |
| + | '''10% on [[Soil groups|HSG C or D soils]]''' |
| + | |- |
| + | |} |
| | | |
| ==Construction== | | ==Construction== |