| The first option may be suitable for systems optimized for exterior irrigation only. But regulatory authorities may not permit the use of such seasonal systems as part of a storm water control strategy. Year round systems can be protected from freezing by locating the pipes, pumps and cistern indoors and/or below the frost penetration depth[http://www.raqsb.mto.gov.on.ca/techpubs/ops.nsf/0/ee1f1756eacc00e18525808200628fbf/$FILE/OPSD3090.101%20Rev%231%20Nov2010.pdf]. | | The first option may be suitable for systems optimized for exterior irrigation only. But regulatory authorities may not permit the use of such seasonal systems as part of a storm water control strategy. Year round systems can be protected from freezing by locating the pipes, pumps and cistern indoors and/or below the frost penetration depth[http://www.raqsb.mto.gov.on.ca/techpubs/ops.nsf/0/ee1f1756eacc00e18525808200628fbf/$FILE/OPSD3090.101%20Rev%231%20Nov2010.pdf]. |
− | In a recent international research literature review on urban rainwater harvesting systems, Campisano et al. (2017) note that degree of implementation and design choices are strongly influenced by economic constraints (need for low cost, easy to retrofit systems) and government regulations (need for policies, standards and guidelines that ensure system efficacy and improve community acceptance), and that systems tend to be designed for water conservation alone, without considering co-benefits like helping to achieve stormwater management objectives. <ref> Campisano, A., Butler, D., Ward, S., Burns, M.J., Friedler, E., DeBusk, K., Fisher-Jeffes, L.N., Ghisi, E., Rahman, A., Furumai, H., Han, M. 2017. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research. 115 (2017) 195-209. https://www.sciencedirect.com/science/article/abs/pii/S0043135417301483?via%3Dihub </ref>
| |