− | Adequately sizing rainwater harvesting systems is critical to optimizing their operation because under-sizing results in systems that are unable to provide a sufficient, reliable source of water while oversizing increase the capital costs incurred with limited marginal benefits and poses potential water quality risks. In a recent research literature review, Semaan et al. (2020) identified sizing for water storage as most important for system optimization, yet found that sizing for cost is a more frequently implemented optimization approach. They note several sizing and optimization approaches and tools are available globally. <ref>Semaan, M., Day, S.D., Garvin, M., Ramakrishnan, N., Pearce, A. 2020. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resources, Conservation & Recycling: X 6 (2020) 100033. https://www.sciencedirect.com/science/article/pii/S2590289X20300049?via%3Dihub </ref> | + | Adequately sizing rainwater harvesting systems is critical to optimizing their operation because under-sizing results in systems that are unable to provide a sufficient, reliable source of water while oversizing increases the capital costs incurred and poses potential water quality risks if stored water remains unused for long periods of time. In a recent research literature review, Semaan et al. (2020) identified sizing for water storage as most important for system optimization, yet found that sizing for cost is a more frequently implemented optimization approach. They note several sizing and optimization approaches and tools are available globally. <ref>Semaan, M., Day, S.D., Garvin, M., Ramakrishnan, N., Pearce, A. 2020. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resources, Conservation & Recycling: X 6 (2020) 100033. https://www.sciencedirect.com/science/article/pii/S2590289X20300049?via%3Dihub </ref> |