| In a recent international research literature review on urban rainwater harvesting systems, Campisano et al. (2017) note that degree of implementation and design choices are strongly influenced by economic constraints (need lower cost, easier to retrofit systems) and government regulations (need for policies and standards that improve community acceptance and ensure system efficacy), and that systems tend to be designed for water conservation alone, without considering co-benefits like helping to achieve stormwater management objectives. <ref> Campisano, A., Butler, D., Ward, S., Burns, M.J., Friedler, E., DeBusk, K., Fisher-Jeffes, L.N., Ghisi, E., Rahman, A., Furumai, H., Han, M. 2017. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research. 115 (2017) 195-209. https://www.sciencedirect.com/science/article/abs/pii/S0043135417301483?via%3Dihub </ref> | | In a recent international research literature review on urban rainwater harvesting systems, Campisano et al. (2017) note that degree of implementation and design choices are strongly influenced by economic constraints (need lower cost, easier to retrofit systems) and government regulations (need for policies and standards that improve community acceptance and ensure system efficacy), and that systems tend to be designed for water conservation alone, without considering co-benefits like helping to achieve stormwater management objectives. <ref> Campisano, A., Butler, D., Ward, S., Burns, M.J., Friedler, E., DeBusk, K., Fisher-Jeffes, L.N., Ghisi, E., Rahman, A., Furumai, H., Han, M. 2017. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research. 115 (2017) 195-209. https://www.sciencedirect.com/science/article/abs/pii/S0043135417301483?via%3Dihub </ref> |