Changes

Jump to navigation Jump to search
Line 330: Line 330:     
==Performance==
 
==Performance==
To read about the use of stormwater tree trenches featuring soil cells in the Greater Toronto Area see the STEP [https://sustainabletechnologies.ca/app/uploads/2020/09/Soil-cells-tech-brief-FINAL.pdf technical brief] and [https://sustainabletechnologies.ca/app/uploads/2018/10/Queensway-Case-Study_FINAL.pdf case study] on the Queensway Sustainable Sidewalk Pilot Project in the City of Toronto. Evaluations of the project found that stormwater tree trenches are able to increase the urban street tree canopy coverage while requiring minimal surface area below, and provide stormwater benefits associated with TSS and heavy metal contaminant removal and runoff volume reduction, with lower routine maintenance costs than other surface practices like bioretention. <ref> STEP. 2018. The Queensway Sustainable Sidewalk Project https://sustainabletechnologies.ca/app/uploads/2018/10/Queensway-Case-Study_FINAL.pdf </ref> <ref> STEP. 2020. Assessing the Health of Toronto Street Trees Irrigated by Stormwater. https://sustainabletechnologies.ca/app/uploads/2020/09/Soil-cells-tech-brief-FINAL.pdf </ref> In a hydrologic study of the Queensway Sustainable Sidewalk project, Li et al. (2020) highlight the importance of inlet hydraulics and spatial distribution of inflow along the stormwater tree trench and propose an integrated modelling approach to simulate overall runoff control performance. <ref> Li, J., Alinaghaian, S., Joksimovic, D., Chen, L. An Integrated Hydraulic and Hydrologic Modeling Approach for Roadside Bio-Retention Facilities. Water. 2020, 12, 1248 https://www.mdpi.com/2073-4441/12/5/1248 </ref>  Also see Credit Valley Conservation [https://cvc.ca/wp-content/uploads/2016/06/CaseStudy_CPW_Final.pdf Central Parkway LID case study] and [https://cvc.ca/wp-content/uploads//2021/07/TechReport_CPW_Final.pdf technical report] that summarize findings from evaluation of a stormwater tree trench featuring soil cells located in the median of a high-traffic road in Mississauga, Ontario. Monitoring showed the stormwater tree trench performed well over the eight storm events monitored with an average runoff volume reduction of 97%, and peak flow reduction of 96%. <ref>Credit Valley Conservation. 2016. Central Parkway: Road Right-of-Way Retrofits - Case Study. https://cvc.ca/wp-content/uploads/2016/06/CaseStudy_CPW_Final.pdf</ref> <ref>Credit Valley Conservation. 2016. Central Parkway: Low Impact Development Infrastructure
+
In a proof-of-concept study of two stormwater tree trenches in Wilmington, North Carolina, Page et al. (2015) found that the soil-root matrix beneath the supported pavement can be used for stormwater control to achieve runoff volume reduction (80% over a yearlong evaluation period), pollutant retention, pavement stability and urban forestry goals.<ref> Page, J.L., Winston, R.J., Hunt, W.F. 2015. Soils beneath suspended pavements: An opportunity for stormwater control and treatment. Ecological Engineering. v.82. pp.40-48. https://www.sciencedirect.com/science/article/abs/pii/S0925857415001706 </ref>  To read about the use of stormwater tree trenches featuring soil cells in the Greater Toronto Area see the STEP [https://sustainabletechnologies.ca/app/uploads/2020/09/Soil-cells-tech-brief-FINAL.pdf technical brief] and [https://sustainabletechnologies.ca/app/uploads/2018/10/Queensway-Case-Study_FINAL.pdf case study] on the Queensway Sustainable Sidewalk Pilot Project in the City of Toronto. Evaluations of the project found that stormwater tree trenches are able to increase the urban street tree canopy coverage while requiring minimal surface area below, and provide stormwater benefits associated with TSS and heavy metal contaminant removal and runoff volume reduction, with lower routine maintenance costs than other surface practices like bioretention. <ref> STEP. 2018. The Queensway Sustainable Sidewalk Project https://sustainabletechnologies.ca/app/uploads/2018/10/Queensway-Case-Study_FINAL.pdf </ref> <ref> STEP. 2020. Assessing the Health of Toronto Street Trees Irrigated by Stormwater. https://sustainabletechnologies.ca/app/uploads/2020/09/Soil-cells-tech-brief-FINAL.pdf </ref> In a hydrologic study of the Queensway Sustainable Sidewalk project, Li et al. (2020) highlight the importance of inlet hydraulics and spatial distribution of inflow along the stormwater tree trench and propose an integrated modelling approach to simulate overall runoff control performance. <ref> Li, J., Alinaghaian, S., Joksimovic, D., Chen, L. An Integrated Hydraulic and Hydrologic Modeling Approach for Roadside Bio-Retention Facilities. Water. 2020, 12, 1248 https://www.mdpi.com/2073-4441/12/5/1248 </ref>  Also see Credit Valley Conservation [https://cvc.ca/wp-content/uploads/2016/06/CaseStudy_CPW_Final.pdf Central Parkway LID case study] and [https://cvc.ca/wp-content/uploads//2021/07/TechReport_CPW_Final.pdf technical report] that summarize findings from evaluation of a stormwater tree trench featuring soil cells located in the median of a high-traffic road in Mississauga, Ontario. Monitoring showed the stormwater tree trench performed well over the eight storm events monitored with an average runoff volume reduction of 97%, and peak flow reduction of 96%. <ref>Credit Valley Conservation. 2016. Central Parkway: Road Right-of-Way Retrofits - Case Study. https://cvc.ca/wp-content/uploads/2016/06/CaseStudy_CPW_Final.pdf</ref> <ref>Credit Valley Conservation. 2016. Central Parkway: Low Impact Development Infrastructure
 
Performance and Risk Assessment - Technical Report. https://cvc.ca/wp-content/uploads//2021/07/TechReport_CPW_Final.pdf</ref>
 
Performance and Risk Assessment - Technical Report. https://cvc.ca/wp-content/uploads//2021/07/TechReport_CPW_Final.pdf</ref>
  

Navigation menu