Line 237: |
Line 237: |
| |style="text-align: center;" |70% | | |style="text-align: center;" |70% |
| |style="text-align: center;" |Emerson and Traver (2004)<ref>Emerson, C., Traver, R. 2004. The Villanova Bio-infiltration Traffic Island: Project Overview. Proceedings of 2004 World Water and Environmental Resources Congress (EWRI/ASCE). Salt Lake City, Utah, June 22 – July 1, 2004. https://ascelibrary.org/doi/book/10.1061/9780784407370</ref> | | |style="text-align: center;" |Emerson and Traver (2004)<ref>Emerson, C., Traver, R. 2004. The Villanova Bio-infiltration Traffic Island: Project Overview. Proceedings of 2004 World Water and Environmental Resources Congress (EWRI/ASCE). Salt Lake City, Utah, June 22 – July 1, 2004. https://ascelibrary.org/doi/book/10.1061/9780784407370</ref> |
− | |-
| + | |
− | |style="text-align: center;" |
| |
− | |style="text-align: center;" |97 to 100%
| |
− | |style="text-align: center;" |Brattebo and Booth (2003)<ref name="example2">Brattebo, B. and D. Booth. 2003. Long term stormwater quantity and quality performance of permeable pavement systems. Water Research 37(18): 4369-4376 </ref>
| |
− | |-
| |
− | |style="text-align: center;" |Connecticut
| |
− | |style="text-align: center;" |'''<u><span title="Note: Runoff reduction estimates are based on differences in runoff volume between the practice and a conventional impervious surface over the period of monitoring." >72%*</span></u>'''
| |
− | |style="text-align: center;" |Gilbert and Clausen (2006)<ref>Gilbert, J. and J. Clausen. 2006. Stormwater runoff quality and quantity from asphalt, paver and crushed stone driveways in Connecticut. Water Research 40: 826-832.</ref>
| |
− | |-
| |
| |style="text-align: center;" |China | | |style="text-align: center;" |China |
| |style="text-align: center;" |'''<u><span title="Note: Runoff reduction estimates are based on SWMM and RECARGA models applied to generate the runoff reduction percentages of a bioretention installation near one of China's and expressway service area.">85 to 100%*</span></u>''' | | |style="text-align: center;" |'''<u><span title="Note: Runoff reduction estimates are based on SWMM and RECARGA models applied to generate the runoff reduction percentages of a bioretention installation near one of China's and expressway service area.">85 to 100%*</span></u>''' |
Line 264: |
Line 256: |
| |style="text-align: center;" |Gao, ''et al.'' (2018)<ref>Gao, J., Pan, J., Hu, N. and Xie, C., 2018. Hydrologic performance of bioretention in an expressway service area. Water Science and Technology, 77(7), pp.1829-1837.</ref> | | |style="text-align: center;" |Gao, ''et al.'' (2018)<ref>Gao, J., Pan, J., Hu, N. and Xie, C., 2018. Hydrologic performance of bioretention in an expressway service area. Water Science and Technology, 77(7), pp.1829-1837.</ref> |
| |- | | |- |
− | |style="text-align: center;" |United Kingdom | + | |style="text-align: center;" |North Carolina |
− | |style="text-align: center;" |53 to 66% | + | |style="text-align: center;" |40 to 60% |
− | |style="text-align: center;" |Pratt ''et al.'' (1995)<ref>Pratt, C.J., Mantle, J.D.G., Schofield, P.A. 1995. UK research into the performance of permeable pavement reservoir structures in controlling stormwater discharge quantity and quality. Water Science Technology. Vol. 32. No. 1. pp. 63-69.</ref> | + | |style="text-align: center;" |Smith and Hunt (2007)<ref>Smith, R and W. Hunt. 2007. Pollutant removals in bioretention cells with grass cover. Proceedings 2nd National Low Impact Development Conference. Wilmington, NC. March 13-15, 2007.</ref> |
| + | |- |
| + | |style="text-align: center;" |North Carolina |
| + | |style="text-align: center;" |33 to 50% |
| + | |style="text-align: center;" |Hunt and Lord (2006). <ref>Hunt, W.F. and Lord, W.G. 2006. Bioretention Performance, Design, Construction, and Maintenance. North Carolina Cooperative Extension Service Bulletin. Urban Waterways Series. AG-588-5. North Carolina State University. Raleigh, NC.</ref> |
| + | |- |
| + | |style="text-align: center;" |Maryland and North Carolina |
| + | |style="text-align: center;" |20 to 50% |
| + | |style="text-align: center;" |Li ''et al.'' (2009). <ref>Li, H., Sharkey, L.J., Hunt, W.F., and Davis, A.P. 2009. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. Journal of Hydrologic Engineering. Vol. 14. No. 4. pp. 407-415.</ref> |
| + | |- |
| + | |style="text-align: center;" |Ohio |
| + | |style="text-align: center;" |36to 59% |
| + | |style="text-align: center;" |Winston ''et al.'' (2016). <ref>Winston, R.J., Dorsey, J.D. and Hunt, W.F. 2016. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Science of the Total Environment, 553, pp.83-95.</ref> |
| |- | | |- |
− | |style="text-align: center;" |Maryland | + | |rowspan="10" style="text-align: center;" | Bioretention with underdrain & liner |
− | |style="text-align: center;" |45% to 60%
| |
− | |style="text-align: center;" |Schueler ''et al.'' (1987)<ref>Schueler, T. 1987. Controlling urban runoff: a practical manual for planning and designing urban BMPs. Metropolitan Washington Council of Governments. Washington, DC. </ref>
| |
| |- | | |- |
− | |style="text-align: center;" |Mississauga | + | |style="text-align: center;" |Ontario |
− | |style="text-align: center;" |61 to 99% | + | |style="text-align: center;" |15 to 34% |
− | |style="text-align: center;" |<span class="plainlinks">[https://cvc.ca/wp-content/uploads/2018/05/IMAX-Low-Impact-Development-Monitoring-Case-Study-may-24.pdf CVC (2018)]</span> | + | |style="text-align: center;" |TRCA (2019). <ref>STEP. 2019. Comparative Performance Assessment of Bioretention in Ontari0. Technical Brief. https://sustainabletechnologies.ca/app/uploads/2019/10/STEP_Bioretention-Synthesis_Tech-Brief-New-Template-2019-Oct-10.-2019.pdf.</ref> |
| |- | | |- |
− | |style="text-align: center;" |Montreal | + | |style="text-align: center;" |Maryland |
− | |style="text-align: center;" |26 to 98% | + | |style="text-align: center;" |49 to 58% |
− | |style="text-align: center;" |Vaillancourt ''et al.'' (2019) <ref>Vaillancourt, C., Duchesne, S., & Pelletier, G. 2019. Hydrologic performance of permeable pavement as an adaptive measure in urban areas: case studies near Montreal, Canada. Journal of Hydrologic Engineering, 24(8), 05019020.</ref> | + | |style="text-align: center;" |Davis (2008). <ref>Davis, A.P. 2008. Field performance of bioretention: Hydrology impacts. Journal of hydrologic engineering, 13(2), pp.90-95. https://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0699(2008)13:2(90)</ref> |
| |- | | |- |
− | |style="text-align: center;" |Northern Ohio | + | |style="text-align: center;" |Queensland, Australia |
− | |style="text-align: center;" |16 to 99% | + | |style="text-align: center;" |33 to 84% |
− | |style="text-align: center;" |Winston ''et al.'' (2015) <ref>Winston, R. J., Dorsey, J. D., & Hunt, W. F. (2015). Monitoring the performance of bioretention and permeable pavement stormwater controls in Northern Ohio: hydrology, water quality, and maintenance needs. Chagrin River Watershed Partners. Inc. under NOAA award No. NA09NOS4190153.</ref> | + | |style="text-align: center;" |Lucke and Nichols (2015). <ref>Lucke, T., & Nichols, P. W. B. 2015. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Science of The Total Environment, 536, 784-792. doi:http://dx.doi.org/10.1016/j.scitotenv.2015.07.142</ref> |
| |- | | |- |
− | |style="text-align: center;" |Seoul, Korea | + | |style="text-align: center;" |Victoria, Australia |
− | |style="text-align: center;" |30 to 65% | + | |style="text-align: center;" |15 to 83% |
− | |style="text-align: center;" |Shafique ''et al.'' (2018) <ref>Shafique, M., Kim, R. and Kyung-Ho, K., 2018. Rainfall runoff mitigation by retrofitted permeable pavement in an urban area. Sustainability, 10(4), p.1231.</ref> | + | |style="text-align: center;" |Hatt ''et al.'' (2009). <ref>Hatt, B. E., Fletcher, T. D., & Deletic, A. 2009. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365(3), 310-321. doi:http://dx.doi.org/10.1016/j.jhydrol.2008.12.001</ref> |
| |- | | |- |
| | colspan="2" style="text-align: center;" |'''<u><span title="Note: This estimate is provided only for the purpose of initial screening of LID practices suitable for achieving stormwater management objectives and targets. Performance of individual facilities will vary depending on site specific contexts and facility design parameters and should be estimated as part of the design process and submitted with other documentation for review by the approval authority." >Runoff Reduction Estimate*</span></u>''' | | | colspan="2" style="text-align: center;" |'''<u><span title="Note: This estimate is provided only for the purpose of initial screening of LID practices suitable for achieving stormwater management objectives and targets. Performance of individual facilities will vary depending on site specific contexts and facility design parameters and should be estimated as part of the design process and submitted with other documentation for review by the approval authority." >Runoff Reduction Estimate*</span></u>''' |
| |colspan="2" style="text-align: center;" |'''85% without underdrain;''' | | |colspan="2" style="text-align: center;" |'''85% without underdrain;''' |
− | '''45% with underdrain''' | + | '''45% with underdrain''' | '''33% with underdrain and liner''' |
| |- | | |- |
| |} | | |} |