Difference between revisions of "Geotextiles"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
m
Line 16: Line 16:
 
{|class="mw-collapsible mw-collapsed wikitable"
 
{|class="mw-collapsible mw-collapsed wikitable"
 
|-
 
|-
! style="background:white; color:red"|Recommended criteria for selection of geotextile fabric'''
+
!Recommended criteria for selection of geotextile fabric'''
 
|-  
 
|-  
!style="background: darkcyan; color: white"|Percent soil/filter media passing 0.075 mm (#200 sieve)
+
!Percent soil/filter media passing 0.075 mm (#200 sieve)
!style="background: darkcyan; color: white"|Non-woven fabric apparent opening size (AOS, mm)
+
!Non-woven fabric apparent opening size (AOS, mm)
!style="background: darkcyan; color: white"|Woven fabric percent open area (POA, %)
+
!Woven fabric percent open area (POA, %)
!style="background: darkcyan; color: white"|Permittivity (sec<sup>-1</sup>)
+
!Permittivity (sec<sup>-1</sup>)
 
|-
 
|-
 
|>85||≤ 0.3||-||0.1
 
|>85||≤ 0.3||-||0.1

Revision as of 20:27, 16 October 2017

Geotextiles can be used to prevent downward migration of smaller particles in to larger aggregates, and slump of heavier particles into finer underlying courses. The formation of biofilm on geotextiles has also been shown to improve water quality:

  • By degrading petroleum hydrocarbons[1]
  • By reducing organic pollutant and nutrient concentrations [2]
  • When installing geotextiles an overlap of 150 - 300 mm should be used.

Material specifications should conform to OPSS 1860 for Class II geotextile fabrics [3].

  • Fabrics should be woven monofilament or non-woven needle punched.
  • Woven slit film and non-woven heat bonded fabrics should not be used, as they are prone to clogging.

In choosing a product, consider:

  1. The maximum forces that will be exerted on the fabric (i.e., what tensile, tear and puncture strength ratings are required?),
  2. The load bearing ratio of the underlying native soil (i.e. is the geotextile needed to prevent downward migration of aggregate into the native soil?),
  3. The texture (i.e., grain size distribution) of the overlying and underlying materials, and
  4. The suitable apparent opening size (AOS) for non-woven fabrics, or percent open area (POA) for woven fabrics, to maintain water flow even with sediment and microbial film build-up.
Recommended criteria for selection of geotextile fabric
Percent soil/filter media passing 0.075 mm (#200 sieve) Non-woven fabric apparent opening size (AOS, mm) Woven fabric percent open area (POA, %) Permittivity (sec-1)
>85 ≤ 0.3 - 0.1
50 - 85 ≤ 0.3 ≥ 4 0.1
15 - 50 ≤ 0.6 ≥ 4 0.2
5 - 15 ≤ 0.6 ≥ 4 0.5
≤ 5 ≤ 0.6 ≥ 10 0.5
  1. Newman AP, Coupe SJ, Spicer GE, Lynch D, Robinson K. MAINTENANCE OF OIL-DEGRADING PERMEABLE PAVEMENTS: MICROBES, NUTRIENTS AND LONG-TERM WATER QUALITY PROVISION. https://www.icpi.org/sites/default/files/techpapers/1309.pdf. Accessed July 17, 2017.
  2. Paul P, Tota-Maharaj K. Laboratory Studies on Granular Filters and Their Relationship to Geotextiles for Stormwater Pollutant Reduction. Water. 2015;7(4):1595-1609. doi:10.3390/w7041595.
  3. ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 1860 MATERIAL SPECIFICATION FOR GEOTEXTILES. 2012. http://www.raqsb.mto.gov.on.ca/techpubs/OPS.nsf/0/2ccb9847eb6c56738525808200628de1/$FILE/OPSS%201860%20Apr12.pdf. Accessed July 17, 2017