Difference between revisions of "Bioretention: Performance"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 108: Line 108:
 
*http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000876 (pollutants)
 
*http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000876 (pollutants)
 
*http://ascelibrary.org/doi/abs/10.1061/9780784413883.003 (maturation)
 
*http://ascelibrary.org/doi/abs/10.1061/9780784413883.003 (maturation)
 +
*https://www1.villanova.edu/content/dam/villanova/engineering/vcase/sym-presentations/2011/40_2ayers.pdf (maturation)
 
*https://www.chijournal.org/C417 (undersized)
 
*https://www.chijournal.org/C417 (undersized)
 +
*https://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/STONE%20THESIS%20FINAL.pdf (modified biomedia)

Revision as of 18:54, 1 August 2017

Performance of bioretention with internal water storage[1]
Location Biomedia composition Media depth (cm) Internal water storage depth (cm) I/P* Runoff volume reduction (%) TSS reduction(%) TN reduction (%) TP reduction (%)
Montréal[2] 88% sand, 8% fines, 4% OM 180 150 47 97 99 99 99
Virginia[3] 88% sand, 8% fines, 4% OM 180 150 47 97 99 99 99
North Carolina[4] 96% sand, 4% fines 110 88 12 89 58 58 -10
58 93
96 72 13 98
42 100
North Carolina[5] loamy sand, 3% OM 120 60 20 >99 - - -
North Carolina[6] 98% sand, 2% fines 90 30 12 90 - - -
90 60 12 98 - - -
North Carolina[7] 15% sand, 80% fines, 5% OM 60 45 68 - - 54 63
90 75 68 - - 54 58
 *Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell

References[edit]

  1. Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.
  2. Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.
  3. DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.
  4. Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.
  5. Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).
  6. Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.
  7. Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.
  1. REDIRECT Special:ArticleFeedbackv5

For review