Changes
Jump to navigation
Jump to search
← Older edit
Newer edit →
Retention swales
(view source)
Revision as of 00:31, 29 September 2017
302 bytes added
,
7 years ago
no edit summary
Line 5:
Line 5:
Sizing a triangular channel for complete volume retention:
Sizing a triangular channel for complete volume retention:
−
<math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}
f
}</math>
+
<math>L=\frac{151,400Q_{p}^{\frac{5}{8}}m^{\frac{5}{8}}S^{\frac{3}{16}}}{n^{\frac{3}{8}}\left (\sqrt{1+m^{2}} \right )^{\frac{5}{8}}
q
}</math>
===Trapezoidal channel===
===Trapezoidal channel===
Sizing a trapezoidal channel for complete volume retention:
Sizing a trapezoidal channel for complete volume retention:
−
<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}
f
}</math>
+
<math>L=\frac{360,000Q_{p}}{\left\{ b+2.388\left[\frac{Q_{p}n}{\left(2\sqrt{1+m^{2}-m}\right)S^{\frac{1}{2}}}\right ]^{\frac{3}{8}}\sqrt{1+m^{2}} \right \}
q
}</math>
+
+
{Plainlist|1=Where:
+
*L = length of swale in m
+
*Q<sub>p</sub> = peak flow of the storm to be controlled, in m<sup>3</sup>/s
+
*m = swale side slope (dimensionless)
+
*S = the longitudinal slope (dimensionless)
+
*n = Manning's coefficeint (dimensionless)
+
*b = bottom width of trapezoidal swale, in m.}
+
+
+
+
+
+
[[category:modeling]]
[[category:modeling]]
Jenny Hill
8,255
edits
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Home
Table of contents
All pages
Recent changes
Responses to comments
Tools
Special pages
Printable version