Line 138: |
Line 138: |
| Single LIDs placed scarcely may not be able to tackle climate change. For this reason, there has to be a (sub)watershed scale effort. | | Single LIDs placed scarcely may not be able to tackle climate change. For this reason, there has to be a (sub)watershed scale effort. |
| *“Retrofitting a single blue-green measure is hardly ever a successful strategy to deal with all relevant climate risks. In order to optimally use the potential of blue-green measures in creating urban resilience to flooding, drought and heat stress combinations of blue-green measures, ‘adaptation sets’, have to be implemented. The composition of an effective and cost efficient package of measures depends on the characteristics of the project site.”<ref name=Voskamp/> | | *“Retrofitting a single blue-green measure is hardly ever a successful strategy to deal with all relevant climate risks. In order to optimally use the potential of blue-green measures in creating urban resilience to flooding, drought and heat stress combinations of blue-green measures, ‘adaptation sets’, have to be implemented. The composition of an effective and cost efficient package of measures depends on the characteristics of the project site.”<ref name=Voskamp/> |
− | * “Four vulnerability reduction capacities are required to effectively create resilience: adaptive, threshold, coping, and recovery capacity. An urban area has different levels of these capacities for pluvial and fluvial flooding, heat stress, and drought. Each type of blue-green measure strengthens these capacities in a different way and to a different degree. A combination of measures is required for all-inclusive climate vulnerability reduction. It depends on the current vulnerability of a site which capacities require strengthening most [15] and, accordingly, which combination of measures is most beneficial to increase resilience to extreme events of a particular site.”<ref name=Voskamp/> | + | * “Four vulnerability reduction capacities are required to effectively create resilience: adaptive, threshold, coping, and recovery capacity. An urban area has different levels of these capacities for pluvial and fluvial flooding, heat stress, and drought. Each type of blue-green measure strengthens these capacities in a different way and to a different degree. A combination of measures is required for all-inclusive climate vulnerability reduction. It depends on the current vulnerability of a site which capacities require strengthening most and, accordingly, which combination of measures is most beneficial to increase resilience to extreme events of a particular site.”<ref name=Voskamp/> |
| * LID BMPs are like a toolbox from which engineers can pick and choose depending on site constraints. But this has to come after a larger scale planning strategy to manage water and other ecosystem spaces. | | * LID BMPs are like a toolbox from which engineers can pick and choose depending on site constraints. But this has to come after a larger scale planning strategy to manage water and other ecosystem spaces. |
− | *“Green infrastructure retrofits, which included street- connected bioretention cells, reduced peak and total stormflow and increased lag times from a suburban residential headwater street. On Klusner Ave, a voluntary participation scheme in which 13.5% of households had rain barrels and rain gardens or street-connected bioretention cells added to their parcels resulted in up to 33% reductions in peak flows, 40% reductions in total storm volumes and desynchronization of peak flow timing compared with an adjacent street where no green infrastructure was installed. Connecting” <Ref>Jarden, Kimberly M., Anne J. Jefferson, and Jennifer M. Grieser. 2016. “Assessing the Effects of Catchment-Scale Urban Green Infrastructure Retrofits on Hydrograph Characteristics.” Hydrological Processes 30 (10):1536–50. https://doi.org/10.1002/hyp.10736.</ref>also notes: “The results of this study demonstrate promising effectiveness of catchment-scale green infrastructure retrofits in mitigating stormwater run-off from headwater streets. In particular, connection to streets appears to leverage high value out of a limited number of installations. The site of this study is very typical of mid-20th-century American residential development, suggesting that the results achieved here may be possible to replicate in other areas.” | + | *“Green infrastructure retrofits, which included street- connected bioretention cells, reduced peak and total stormflow and increased lag times from a suburban residential headwater street. On Klusner Ave, a voluntary participation scheme in which 13.5 % of households had rain barrels and rain gardens or street-connected bioretention cells added to their parcels resulted in up to 33 % reductions in peak flows, 40 % reductions in total storm volumes and desynchronization of peak flow timing compared with an adjacent street where no green infrastructure was installed. Connecting” <Ref>Jarden, Kimberly M., Anne J. Jefferson, and Jennifer M. Grieser. 2016. “Assessing the Effects of Catchment-Scale Urban Green Infrastructure Retrofits on Hydrograph Characteristics.” Hydrological Processes 30 (10):1536–50. https://doi.org/10.1002/hyp.10736.</ref>also notes: “The results of this study demonstrate promising effectiveness of catchment-scale green infrastructure retrofits in mitigating stormwater run-off from headwater streets. In particular, connection to streets appears to leverage high value out of a limited number of installations. The site of this study is very typical of mid-20th-century American residential development, suggesting that the results achieved here may be possible to replicate in other areas.” |
| | | |
| ==Within Ontario== | | ==Within Ontario== |