Difference between revisions of "LID Case Studies"

From LID SWM Planning and Design Guide
Jump to navigation Jump to search
Line 48: Line 48:
 
Creekside Crossing is a communal centre in a heavily urbanized area of Mississauga. Due to extensive development in the area, several Low Impact Development (LID) practices were constructed on site. All combined, the LIDs were able to fulfill the requirement of the TTRCA's water balance objective of retaining runoff from a 10 mm rain event onsite (usually set at 5 mm, but due to the rehabilitation work was completed in a floodplain this objective was increased twofold. The LIDs, which include [[Bioretention]] areas, [[Soakaways]]/Infiltration galleries, [[Vegetated filter strips]] and [[Permeable pavement]], achieve the water balance objective through attenuation/infiltration and evapotranspiration. To read more about this site and the performance of the LIDs mentioned, click on the button above.
 
Creekside Crossing is a communal centre in a heavily urbanized area of Mississauga. Due to extensive development in the area, several Low Impact Development (LID) practices were constructed on site. All combined, the LIDs were able to fulfill the requirement of the TTRCA's water balance objective of retaining runoff from a 10 mm rain event onsite (usually set at 5 mm, but due to the rehabilitation work was completed in a floodplain this objective was increased twofold. The LIDs, which include [[Bioretention]] areas, [[Soakaways]]/Infiltration galleries, [[Vegetated filter strips]] and [[Permeable pavement]], achieve the water balance objective through attenuation/infiltration and evapotranspiration. To read more about this site and the performance of the LIDs mentioned, click on the button above.
  
 +
{{Clickable button|[[File:UTSC bioretention.PNG|130 px|link=https://sustainabletechnologies.ca/app/uploads/2015/07/U-of-T-Scarborough.pdf]]}}
 +
 +
The University of Toronto (Scarborough Campus) - UTSC, has been growing steadily over the past decades from 2011 - 2015 alone, campus growth has resulted in nearly 60,000 m2
 +
of new buildings. To minimize the impact on the environment and managing increased stormwater runoff were important considerations that the university wanted to address. As a result, the East Arrival Court (EAC) retrofit, which captures stormwater in the [[Bioretention]] area of the parking lot and in the nearby [[Dry pond]], which provides temporary storage, and greater opportunities for infiltration and evapotranspiration were installed to help to improve the quality and reduce the volume of runoff discharging to the nearby Rouge River. To read more about this project click the button above.
 +
 +
{{Clickable button|[[File:Lakeview neighbourhood.PNG|130 px|link=https://cvc.ca/wp-content/uploads//2021/07/CaseStudy_Lakeview_Final.pdf]]}}
 +
 +
The Lakeview district is a residential neighbourhood within the City of Mississauga. CVC led the retrofit of this neighbourhood by removing existing ditch and culvert systems and replacing them with boulevard
 +
[[Bioretention]] and [[Permeable pavement]] practices within the municipal road right of way (ROW). Permeable pavement was incorporated at the end of resident’s driveways and bioretention units were situated along frontages in the boulevard. To read more about the Lakeview project being a fully functional LID demonstration showcase site that can be used as a model for future ROW retrofit projects, click the button above.
 +
 +
{{Clickable button|[[File:Portico church retrofit.PNG|130 px|link=https://cvc.ca/wp-content/uploads//2021/07/CaseStudy_Portico_Final.pdf]]}}
 +
 +
The PORTICO Community Church site, located in Mississauga, ON. was one of the first site to develop an LID parking lot in the province, in accordance with [https://sustainabletechnologies.ca/app/uploads/2013/01/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf|CVC/TRCA LID Stormwater Guidelines]. The 2 hectare parking lot at Portico Community Church features [[Permeable pavers]], [[Bioretention]] and two [[Bioswales]]. These LID features help to treat and reduce runoff flowing into the Credit River. Read more about this site and how the church , CVC and volunteers worked together to set up an ongoing maintenance schedule for the LID installations mentioned by clicking the button above.
  
 
Read more about [[Bioretention]] here.
 
Read more about [[Bioretention]] here.

Revision as of 20:31, 18 March 2022

Overview[edit]

This page is a repository of recent case studies that the Sustainable Technologies Evaluation Program (STEP) have conducted over the past two decades or so. Keep your eye on this page as new projects wrap up and technical briefs or reports are developed they will be added to this page.

Each of the documents are separated by the LID BMP feature that was studied / monitored or built, several of these documents will appear several times throughout this page as many have information on multiple LIDs' performance.

Bioretention[edit]

Bentway image.PNG

This report by TRCA found several stormwater management benefits by incorporating several LID principles Bioretention, Infiltration trenches/Infiltration chambers, and Enhanced grass swales into sustainable functional design in an underutilized space, now named the 'Bentway' under Toronto's Gardiner Expressway. This allowed for dual functioning of a public recreational area and suitable stormwater management. Read more by clicking the button above.

Markham grenprint study.PNG

This report by TRCA discusses the recent 'Markham Municipal Green Road Pilot Project' that was established between 2015 - 2018 and which is located on Vanni Avenue, south east of the intersection of 14th Avenue and Middlefield Rd. in a a mixed use residential and commercial property area. The specially designed road includes multiple low impact development (LID) technologies, including Permeable paver boulevards, Bioretention and Infiltration trenches/galleries underlain beneath the bioretention features to manage stormwater at the source. To learn more about this "Green Street" read the project brief by clicking the button above.

Elm drive.PNG

This report by CVC highlights the benefits of a multi-LID retrofit on a mixed-use street with residential homes and an education centre on Elm Drive in Mississauga. The retrofit included, a Permeable pavement sidewalk and parking layby along with six Bioretention cells connected with an underdrain. The site now provides stormwater treatment by improving the quality of stormwater discharged (thermal mitigation, reduction in runoff volume to storm sewers, etc.) to Cooksville Creek. Read more by clicking the button above.

IMAX location.PNG

This report by CVC provides a thorough overview of the monitoring work done at the Imax corporate Headquarters, located in Mississauga, ON. The parking lot was expanded and retrofitted with a combination of traditional asphalt and permeable pavement. The asphalt runoff drains to one of three vegetated bioretention units on site. The The parking lot runoff is collected, absorbed and filtered by these LID practices before entering a wetland adjacent to the parking lot. Read more about these features performance over this multi-year study by clicking the button above.

Fairford parkette.PNG

This report by TRCA highlights the first pilot project by Toronto Green Streets completed as a partnership between City Planning and Toronto Water. The site was first identified as a priority location for improving traffic flow and pedestrian safety in 2014, and the City took the opportunity to retrofit it as a green infrastructure demonstration site. For the project, the right turn lane from Fairford Avenue eastbound to Coxwell Avenue was eliminated and the space was used to build a landscaped bioretention area and public seating. Read more about how this project was spurred by community request for pedestrian improvements to the area and showcased the aesthetic and instrumental value of the new parquetted designed with a bioretention cell on site, by clicking the button above.

UOIT lid.PNG

This report by TRCA discusses the various Low Impact Development (LID) technologies used in key areas of interest throughout UOIT's campus (located in Oshawa, ON.), to both mitigate the impacts of the development and to green the campus. The processes are transparent to the campus community providing valuable visible lessons for students and faculty. The LID technologies used include Bioretention, linear Wetlands, Green roofs and Rainwater harvesting, all designed to reduce runoff volumes and pollutant loads to the adjacent ravine. Read more about the campus' design by clicking the button above.

Bill crothers grass.PNG

This report by TRCA highlights the use of the Treatment Train Approach at Bill Crothers Secondary built back in 2008. The site used to a golf course and was located partially i nthe Rouge Watershed's floodplain. During the planning process for the school several low impact developments were identified to be used on site that included, Bioretention areas, Enhanced swales, Constructed Wetlands and Rainwater harvesting. To learn more about the design process for the school click the button above.

Bentway image.PNG

This report by TRCA found several stormwater management benefits by incorporating several LID principles Bioretention, Infiltration trenches/Infiltration chambers, and Enhanced grass swales into sustainable functional design in an underutilized space, now named the 'Bentway' under Toronto's Gardiner Expressway. This allowed for dual functioning of a public recreational area and suitable stormwater management. Read more by clicking the button above.

Edwards Garden.PNG

This report by TRCA highlights the multiple LID installations located at Edwards Gardens, a botanical garden located at 777 Lawrence Avenue East in Toronto, Ontario and owned by the city. The retrofit of the Edwards Gardens parking lot introduces several new technologies to add to the existing Low Impact Development (LID) practices onsite – an extensive Green roof and a Rainwater harvesting system, alogn wioth Bioretention, Permeable pavers, Infiltration trenches, Exfiltration trenches, and Swales. The stormwater management benefits of the LID practices implemented onsite help to improve the quality and reduce the volume of runoff discharging to Wilket Creek, nearby. To read more about the various LID practices at Edwards Gardens and their performance, click the button above.

Fieldgate commercial property.PNG

Creekside Crossing is a communal centre in a heavily urbanized area of Mississauga. Due to extensive development in the area, several Low Impact Development (LID) practices were constructed on site. All combined, the LIDs were able to fulfill the requirement of the TTRCA's water balance objective of retaining runoff from a 10 mm rain event onsite (usually set at 5 mm, but due to the rehabilitation work was completed in a floodplain this objective was increased twofold. The LIDs, which include Bioretention areas, Soakaways/Infiltration galleries, Vegetated filter strips and Permeable pavement, achieve the water balance objective through attenuation/infiltration and evapotranspiration. To read more about this site and the performance of the LIDs mentioned, click on the button above.

UTSC bioretention.PNG

The University of Toronto (Scarborough Campus) - UTSC, has been growing steadily over the past decades from 2011 - 2015 alone, campus growth has resulted in nearly 60,000 m2 of new buildings. To minimize the impact on the environment and managing increased stormwater runoff were important considerations that the university wanted to address. As a result, the East Arrival Court (EAC) retrofit, which captures stormwater in the Bioretention area of the parking lot and in the nearby Dry pond, which provides temporary storage, and greater opportunities for infiltration and evapotranspiration were installed to help to improve the quality and reduce the volume of runoff discharging to the nearby Rouge River. To read more about this project click the button above.

Lakeview neighbourhood.PNG

The Lakeview district is a residential neighbourhood within the City of Mississauga. CVC led the retrofit of this neighbourhood by removing existing ditch and culvert systems and replacing them with boulevard Bioretention and Permeable pavement practices within the municipal road right of way (ROW). Permeable pavement was incorporated at the end of resident’s driveways and bioretention units were situated along frontages in the boulevard. To read more about the Lakeview project being a fully functional LID demonstration showcase site that can be used as a model for future ROW retrofit projects, click the button above.

Portico church retrofit.PNG

The PORTICO Community Church site, located in Mississauga, ON. was one of the first site to develop an LID parking lot in the province, in accordance with LID Stormwater Guidelines. The 2 hectare parking lot at Portico Community Church features Permeable pavers, Bioretention and two Bioswales. These LID features help to treat and reduce runoff flowing into the Credit River. Read more about this site and how the church , CVC and volunteers worked together to set up an ongoing maintenance schedule for the LID installations mentioned by clicking the button above.

Read more about Bioretention here.

Stormwater Tree Trenches[edit]

Queensway tree trench.PNG

The Sustainable Sidewalk project was initiated as a solution to address the disturbance of street tree roots associated with the removal of sidewalks for utility cuts. A working group with participants from various City of Toronto Divisions was formed and the group decided to use soil cells for a stormwater tree trench system (bioretention) and in the fall of 2008 constructed The 'Queensway Sustainable Sidewalk Pilot Project'. Monitoring results from the study found that the soils were able to reduce TSS (>80%) and heavy metal concentrations in the road run off that entered the system. Also the outlet flow meter did not show any flow release after a rainfall of 3 mm that was preceded by a period of no rain, showcasing the systems ability to mitigate excess stormwater runoff in the heavily urbanized location.

Central parkway stt.PNG

The Central Parkway low impact development (LID) road retrofit is located on Central Parkway East, just south of Burnhamthorpe Road in Mississauga, Ontario. Read the brief authored by CVC about the performance of the Stormwater Tree Trenches LID feature is able to reduce the majority of stormwater runoff leaving the site during most rainfall events. The Central Parkway project was the first green road retrofit to take place in Mississauga where the Silva Cell system Soil Cells were specifically used for stormwater treatment in addition to encouraging tree growth and aesthetic design.


Read more about Stormwater Tree Trenches here.

Wetlands[edit]

Wetland water balance.PNG

The purpose of this document authored by TRCA and CVC is to inform the need for, and the design of, mitigation measures to ensure a minimal difference between the post-development and pre-development water balance of a wetland. This Modelling Document provides an overview of wetland hydrology modelling, the strengths and weaknesses of various hydrological models, and the information that needs to be included in a wetland feature-based water analysis report. Read more about the importance of choosing the correct hydrological model and inclusion of the pertinent information required for a proper water analysis report by clicking the button above.


Wetland.PNG

The following document from TRCA helps user better determine the appropriate model to simulate wetland hydrology, wetland storage dynamics, and the representation of stormwater management and low impact development (LID) facilities, etc. This document is an appendix to the previously mentioned, Wetland Water Balance Modelling Guidance Document and is intended to be a resource for modelers to help them make more informed decisions in modelling wetland water balance scenarios. Read more about this valuable resource for modelers to consult for applications requiring a wetland water balance, by clicking the button above.


Read more about Wetlands here.

Rain Garden[edit]

Raingarden starbucks.PNG

The Kleinburg Starbucks Fusion Garden is the first one York Region has established as part of their Fusion Gardening® pilot project. The case study discusses the benefits of a Rain garden, which allows for a beautiful tailored aesthetic for the owner, while also serving as a more absorbent landscape that reduces stormwater runoff and conserves water on site. The garden also uses an Infiltration trench for irrigating the planting bed and Permeable pavement on the pedestrian paths and seating area. Read more about this design concept by clicking the button above.

Read more about Rain gardens here.